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>>»> Abstract

Abstract

Multidimensional scaling and cluster analysis are two numerical
techniques that assist the researcher in ascertaining the structure of data in
different spaces. Multidimensional scaling allows the researcher to convert
large amounts of similarity or proximity data into a geometric picture while
Cluster analysis represents an area of statistics that is concerned with
sorting the observed data into some groups (clusters) based on the
similarity.

It is highly recommended to perform cluster analysis in conjunction

with MDS for many reasons:

(i) Cluster analysis may provide the researcher with ways of
understanding similarity criteria  when interpretations of
geometric dimensions are not readily apparent.

(i) In some clustering problems as in case of lacking metric data
attributes. For example, we only have the dissimilarities
between data objects. The dissimilarity between two data
objects can be metric or nonmetric. To obtain data in the
metric space from these dissimilarities, a possible solution is

using multidimensional scaling (MDS).

There are several models of MDS and CA available to the
researcher; the choice mainly depends uponthe type of data believed to be
under the study.

In this thesis, several models of MDS and CA were introduced. In

addition, we provided a solved mathematical example for each models.
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Since the MDS and cluster analysis are mainly based on the
proximity data, we introduced the different patterns of proximity measures
(similarity and dissimilarity) in addition to solved mathematical example
for each measure.

In this study we performed an application of cluster analysis and
multidimensional scaling on one data set from different car exhibitions and
agencies in Benha city. The data was collected based on the responses we
received in all the questionnaires which were distributed among different
car exhibitions in Benha city. The sample size was 20 customers. The
Twenty customers were asked to rate the 10 cars by showing the cards
bearing the name of a pair of cars. All possible pair of cars were shown,
and the customers were asked to rate their preferences of one car over the
other ona scale of 100 points. If the customer perceived that the two cars
were completely dissimilar, ascore of 0 was given, and if the two cars were
exactly similar a score of 100 was given. The Statistical Package for Social
Sciences (SPSS)was used in order to apply the multi-dimensional scaling
to convert cars market similarity data into a geometric picture. SPSS was
then used to group different cars brands in this geometric map into some
clusters. After finalizing the analysis and getting the result, we performed
interpretations of the results and provided insights for some companies to
know how their brand of products is rated among other similar competing

brands of other companies.

To achieve the purpose of this study, the thesis consists of five

chapters as follow:
Chapter I: An introduction includes a background on multidimensional
scaling and cluster analysis in addition to the aims of the

study.
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Chapter Il: Measures of proximity which discuss the different patterns

seen in proximity measures (similarity and dissimilarity).
Chapter I11: Multidimensional scaling in terms of concepts and methods.

Chapter IV: Cluster analysis in terms of concepts and methods.

Chapter V: An application of cluster analysis and multidimensional

scaling.
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1. INTRODUCTION

11  Introduction

The amount of data collected from various sources is increasing.
With the invention of new technologies, preserving this enormous volume
of data for future reference and analysis has become more manageable. In
contrast, the task of discovering underlying patterns and hidden
information from data has become more challenging and complex.

According to Witten et al. (2005) "As the volume of data increases,
inexorably, the proportion of it that people understand decreases,
alarminglyl'. As such, we need automated and practical tools and
techniques to take full advantage of the information lying hidden in the
data. This is where Data Mining techniques come to aid. Data Mining is
defined as the process of automatic discovery of hidden, interesting, and
previously unknown patterns in data stored electronically [Witten and
Frank (2005)]. Some of the benefits of mining data are to extract previously
unknown information and use it to predict future trends, make decisions,
categorize or group data to discover common characteristics, amongst
others. Among various data mining techniques, cluster analysis (CA)
and multidimensional scaling (MDS) are interesting and fast growing
topics.

Multidimensional scaling and cluster analysis are two numerical
techniques that assist the researcher in ascertaining the structure of data in

different spaces.

Multidimensional scaling allows the researcher to convert large
amounts of similarity or proximity data into a geometric picture. Upon
obtaining a geometric representation, it is the researcher's task to develop

interpretations for the different dimensions in that picture.
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Multidimensional scaling analyses typically report results in two or three
dimensions for ease of viewing and interpretation by the researcher, but it
Is possible to search for better goodness-of-fit in higher dimensional spaces
indeed.

Cluster analysis is a related visualization technique that returns a tree
structure rather than a geometric configuration. It is particularly useful
when used in conjunction with MDS since it may provide the researcher
with ways of understanding similarity criteria when interpretations of
geometric dimensions are not readily apparent. Cluster analysis is also
appropriate for situations where the multiple frames of reference or other
violations of modeling assumptions, geometric configurations provide

poor fits to rating data.( Tversky and Hutchinson (1986)).

Generally, there are two types of attributes involved in the data to be
clustered: metric and nonmetric. If all the data attributes are metric, a data
object can be represented by a vector in the metric space. A metric space
Is a set S with a global distance function (the metric d) that, for every two
points X, y in S, gives the distance between them as a nonnegative real
number d(y,x).A metric space must also satisfy:
1.d(x,y) =0, ifx=y.

2. d(x,y) = d(y,x).
3. The triangle inequality: d(x,y) < d(x,z) + d(z,y).

In many clustering problems, we do not have metric data attributes.
For example, we only have the dissimilarities between data objects. The
dissimilarity between two data objects can be metric or nonmetric. To
obtain data in the metric space from these dissimilarities, a possible

solution is multidimensional scaling (MDS). Besides, MDS can be used to
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transfer data from a higher dimensional metric space, say m-dimension, to
a lower dimensional metric space, say p-dimension, where p <m.

There are several models of MDS and CA available to the
researcher; the choice mainly depends upon the type of data believed to be
under study.

12 Aim of the proposed study:

Clustering analysis and MDS will be applied to a data set of car brands and
their ratings among customers in car market. In this study, we are trying to
describe the relationships among the 10 car brands. The results produced
by application of these methods together can be then used to investigate
whether different car brands mentioned in the market are strongly related
or not. MDS methods will be used to create separate displays for each car
based on two factors (2 dimensions) in a geometric picture. Afterwards,
Cluster analysis will be used to show the clustering structures of different
cars within the market thus helping the car companies to know how their
car brand is rated among other similar competing car brands and who their

rival in the same cluster are.

1.3 Review of previous studies:

I-Cluster Analysis:

Cluster analysis is used in many disciplines, including biology,
geology, anthropology, and marketing (Tryon, 1939). Before cluster
analysis can be performed, a set of objects must be arranged in a data
matrix. In most cases, the columns of the matrix represent the individual

objects, while the rows represent a set of determined attributes that each
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object may or may not possess. For example, an archaeologist may be
interested in determining the evolutionary link of an unspecified set of
bones. The archaeologist can identify several physical, chemical, and other
attributes of these bones and arrange them as rows on a matrix. Then, the
bones and other bones that have already been classified are laid out as
columns. Cluster analysis uses a variety of mathematical methods to
determine which classified bones are the most similar to the unknown
bones, based on the determined attributes (Kaufman & Rousseauw,
1990).

Romesburg (1984) outlined three research goals that cluster analysis
can answer. The first goal is to create a question to be tested later. Creating
a question is relatively simple, as the researcher can simply run a cluster
analysis on a data matrix and observe what clusters form together. Though
it would be irresponsible to draw any conclusions without a hypothesis, it
IS appropriate to further investigate any interesting patterns that emerge in
subsequent studies. The second goal is to create a hypothesis. The
researcher already has a question framed when running the analysis, but no
testable hypothesis. Any patterns that emerge may answer the question and
open up the possibility of a hypothesis. Finally, cluster analysis can be used
to test a hypothesis. Typically, previous studies that may or may not have
already used cluster analysis have presented evidence of a clear, testable
hypothesis. The hypothesis must be made a priori and any conclusions
must be directly related to the hypothesis. Most of the literature on

psychometric measures already has a firmly developed hypothesis.

Once a researcher has put together a data matrix, the researcher
determines how to analyze the data by choosing a resemblance coefficient.

There are several resemblance coefficients to choose from, but each
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coefficient is either a similarity or dissimilarity coefficient. This dichotomy
simply expresses the direction of the data; when using a similarity
coefficient; larger values indicate higher similarity between two objects
while the opposite is true with a dissimilarity coefficient. In psychology
literature indicates that the Euclidean distance coefficient is the most
common distance measure in published studies (Clatworthy et al., 2005)
which finds the least distance between two objects via Euclidean geometry.
This coefficient can easily be visualized when only two attributes are
compared across the objects. These two attributes are treated as coordinates
on a two-dimensional plane, and the point on the plane represents an object.
The Euclidean distance coefficient calculates the linear distance between
objects by using the Pythagorean Theorem. Therefore, the farther two

points are, the more dissimilar the represented objects are from each other.

In most matrices, objects are compared across more than two
attributes. A three-attribute cluster analysis can be envisioned as a three-
dimensional space, but higher attribute analyses cannot be pictured as
easily. Nevertheless, the principle remains the same: the Euclidean
distance coefficient calculates the overall distance that two objects are from
each other in a hypothetical space. These distances are placed on a new
matrix called the resemblance matrix, with which researchers can
determine the similarity between individual objects. However, how objects
actually combine to form clusters is determined by a second technique
called the clustering method (Thaler 2010).

Like with distance coefficients, the researcher determines the
optimal clustering method and there are many methods that he can select
(Kaufman and Rousseauw, 1990). Clustering methods can be

hierarchical or partitional in nature. Hierarchical methods are the preferred
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form for most researchers, as they build dendograms, or trees, which are
visual representations of the clusters. The majority of the previous studies
used Ward’s minimum variance clustering method (Ward, 1963), which
Is also the second most used clustering method across all scientific fields
(Romesburg, 1984). Like all hierarchical methods, Ward’s method is
agglomerative, building clusters from individual objects and combining
clusters based on their similarity to each other until the final cluster, which
encompasses all the data, is formed. This final cluster can be visualized as
the “trunk” of the tree, which in turn breaks into smaller and smaller
branches, while the tips of the tree represent the original objects. Ward’s
method calculates similarity by using a sum-of-squares calculation to see
which two items exhibit the least variance when combined into a
hypothetical “average.” All cluster combinations are compared at each
level of the tree, and a new cluster is formed each time the smallest variance
Is found. This continues until all objects are formed into one unifying

cluster.

Another hierarchical clustering method worth noting
is the two-step clustering method, which has the advantage of
automatically selecting the number of clusters and handling
categorical as well as continuous variables (Bacher, et al, 2004).
The two-step method clusters individual cases into small sub-
clusters, and then clusters these sub-clusters into the cluster
solution. In large datasets with only continuous variables, such as
the dataset in this study, the Euclidean distance coefficient is used.
A survey on agglomerative hierarchical clustering algorithms was
performed by Murtagh and Contreras (2011) who discussed
their efficient implementations. They look at hierarchical self-

organizing maps, and mixture models.They described a recently
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developed very efficient (linear time) hierarchical clustering
algorithm, which can also be viewed as a hierarchical grid-based

algorithm. They also touched on a number of application domains.

Once the dendogram is fully formed, researchers must determine
where to “cut” the tree, or where the optimal cluster solution is found. The
optimal cut is subjective, but typically a smaller cluster solution is
preferred over a larger one. Romesburg (1984) recommends that the tree
should be cut where the clusters are maximally related to other variables of
interest. Therefore, cutting the tree in different ways may produce different
results, and the one that fits the proposed hypothesis the best should be
selected.

There may be some unforeseen complications that emerge from the
data. Chaining is a term used to describe a cluster that repeatedly merges
with individual objects; much like a black hole absorbs random pieces of
debris (Anderson, 1973). Ideally we would want objects to clump into
several smaller clusters and only merge together into the single cluster at
the very end of the analysis. With chaining, it is more difficult to determine
the similarity of objects as each object is added one at a time to a single,
growing cluster. Another complication can emerge when the dendogram
does not accurately represent the data matrix (Romesburg, 1984). This can
occur because clustering methods mathematically calculate the similarity
of objects using formulas that do not exactly match the actual similarity in
Euclidean space (or, if another coefficient is used, whatever is determined
to represent similarity among objects). Researchers typically avoid this
problem by calculating the cophenetic correlation coefficient, a Pearson’s

correlation between the actual data matrix and the proposed matrix formed
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from the dendogram. Correlations that are greater than 0.80 indicate that

the distortion between the matrix and the dendrogram is not severe.

Sattath and Tversky (1977) criticized existing hierarchical
clustering algorithms on the grounds that empirical rating data, which tend
to be messy, often violated a basic assumption of such algorithms. This
assumption is called the ultrametric inequality; Sattath and Tversky's
description of its concise: given two disjoint clusters, all intra-cluster
distances are smaller than all inter-cluster distances, and all the inter-
cluster distances are equal. An additive tree algorithm is a method for
generating a tree structure given a similarity or distance matrix that does
not require the data to be constrained by the ultrametric inequality. As in
other tree structures, leaf nodes of the tree correspond to stimuli and the
distance (dissimilarity) between them is the length of the path joining them.
Unlike other hierarchical schemes, however, additive trees perm it intra-
cluster distances to exceed inter cluster distances. As a result, additive trees
typically give better fits to rating data than other, simpler, hierarchical

clustering models.

Additive clustering differs from both hierarchical and additive tree
structures in that objects can belong to multiple groups simultaneously. For
example, if subjects were to categorize the numbers 1 to 10, they might
adopt a number of overlapping schemes: evens vs. odds, smaller (<5) vs.
larger, multiples of 3, powers of 2, primes vs. non-primes, and so forth. In
any hierarchical or additive tree scheme, effectively only one of these
features could be used to ascribe any object's location in the tree structure,
creating a "winner-take-all" scenario. This sort of procedure goes directly

against the view of similarity that Tversky (1977) argued for, where a total
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judgment of similarity between any two objects is a

comparison/summation across a range of different features.

The K-means as one of partitional clustering method was applied by
Tarpey (2007) on functional data. He compared the differences in the
clustering outcomes of the K-means method based on how the observed
data were smoothed. In his study he applied the K-means method to the
raw data, and then to three transformations of the raw data into curves
including: B-spline basis, Fourier basis, and a power basis (using an L2
metric). For each of these transformations, the estimated regression
coefficients were clustered by the K-means algorithm. The functional data

used were estimated Hamilton Depression responses from a clinical trial.

Rehman and Mehdi (2013) set a comparison between
density-based algorithms by implementing detailed study of
density based algorithms (Density based spatial clustering of
applications with noise (DBSCAN), Recursive density based
clustering (RDBC).

| I-Multidimensional scaling:

Much of this brief history was found in Wish and Carroll (1982).
Carroll and Arabie (1980) provide a valuable summary within a
taxonomy framework and supply an extensive bibliography.
Multidimensional scaling has its origin with a paper by Young and
Householder (1938). This paper introduced a theorem which addressed
the minimum number of dimensions needed to fit a set of distances to N

points, and a method for building a space capturing the distances. Although
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Richardson (1938) followed quickly with an application of this technique,
little progress was made until the 1950's when the facility of computers
made the large amount of required calculation feasible. In this period,
Torgerson (1952, 1958) developed the techniques that embody classical
multidimensional scaling. He showed the methods that have been used
during this early period. The problem for researchers trying to apply MDS
In actual practice was how to convert a distance rating to specific geometric

information without knowing a priori the distance metric involved.

The breakthrough to practical implementations came in a two-part
paper by Shepard (1962) and two papers by Kruskal (1964a, 1964b).
Shepard had the insight that the geometric configuration could be
recovered without needing to know the specific distance metric by treating
the perceived similarity between stimuli as reflecting some arbitrary
monotonic function of an underlying distance metric, i.e., the subjects'
estimated similarity S;; between objects i and j was some function fof the
true distance D;; between them. The only requirement of the function was

that it be monotonic (the value of the function always increases as the true
distance increases); treating the estimated similarities as a rank-ordering,
with some means for breaking ties, proved a simple way of generating such
a monotonic function. Kruskal expanded on this notion by introducing the
concept of stress, a measure of goodness-of-fit. With a means for
computing the stress in a proposed configuration, an iterative computer
program would be able to judge which of two possible configurations
better fit the similarity data, and thus be able to converge on a numerical
solution. Kruskal.’s own experience led him to characterize a stress value
of .10 as "fair," while a value of 0.05 was considered "good"; stress values
above 0.10 were deemed unfavorable, and values above .20 labeled "poor"
(Kruskal 1964a).
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Carroll and Chang (1970) introduced a metric model which
incorporated individual differences among subjects in a MDS experiment.
In addition to an object space, this model produces a subject space as well.
The MDS program INDSCAL (Carroll 1981) is the computer
implementation of Carroll and Chang's model. INDSCAL was later
generalized into a family of multilinear MDS models called
CANDECOMP (CANonical DECOMPosition of N-way tables) (Carroll,
et al., 1980 and Carroll and Pruzansky 1984). Takane, et al., (1977)
developed a nonmetric MDS model for individual differences which
became the basis for the ALSCAL program (Young 1981).

Up to this point, MDS models and programs had all used a least
squares criterion for determining how well the object space fit the raw data.
Ramsay (1977) introduced a model which used a maximum likelihood
criterion. The underlying distributional assumptions of the model allowed
Ramsay (1978) to perform confirmatory MDS analyses. Ramsay (1981)
implemented his model as the MDS program MULTISCALE. In this
description of MULTISCALE, Ramsay outlined the use of diagnostic plots
such as g-q plots for verifying the validity of the distributional assumptions

and for detecting isolated wild departures from the distribution.

Parallel with these developments in MDS algorithms for deriving
object spaces, research on interpreting the dimensions of the object space
was being performed. Carroll (1980) presents a valuable summary of
models for property (or preference) analysis. Tucker (1960) proposed a
vector model in which the preference of objects is modeled by a vector
through the object space. The vector model is a special case of the ideal

point (or unfolding) model developed by Coombs (1950) (for the
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unidimensional case) and by Bennett and Hays (1960) (for the
multidimensional case). Several computer programs notably MDPREF
(Chang and Carroll 1969) and PREFMAP (Chang and Carroll 1972)
implemented the concepts of these models.

The use of procrustes statistics has attracted much interest as an area
of research in comparing different object spaces. Sibson (1978, 1979)
applied procrustes statistics to analyze the effects of small perturbations in
distance on scaling applications. Gower (1975) presents a generalized
technique for calculating a single procrustes statistic to compare m object

spaces each containing the same N objects.

Recently, resampling techniques have been applied to MDS analyses
to assess the stability of solutions. Wish and Carroll (1982) alluded to the
use of the jackknife for these purposes. Heiser and Meulman (1983) used
bootstrap techniques to compute confidence intervals for object space
coordinates. Weinberg, et al., (1984) used the jackknife as a bootstrap
technique to compute confidence intervals for object space coordinates.
DelLeeuw and Meulman (1986) developed a specialized MDS jackknife

to assess the stability and cross-validity of an object space solution.

A limited amount of research has explored diagnostic measures for
MDS analyses. Pruzansky, et al., (1982) found two properties of
proximity data which aided in identifying whether the data could be fit
better by a spatial model or by a tree model. Proximity data with positive
skewness and lesser elongation of triangles are better fit by spatial models
(such as KYST object space solutions). Their study also supported the
conclusions of an earlier study by Graef and Spence (1979) that small

distances are less important in nonmetric MDS analyses than are large
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distances. Graef and Spence generated proximities between 31 objects
within a two-dimensional circle via random perturbation of the distances.
They then deleted different thirds ? of the proximities according to
proximity size (i.e., the largest third, the smallest third, and the middle
third) and compared the recovered distances from the object spaces
produced by the MDS program to the true distances between the objects on

the circle.

With a practical algorithm available, an increasing number of
researchers began to use MDS to explore similarity and categorization of
data; a good survey of applications in various areas of investigation can be
found in Tversky and Hutchinson's (1986) reanalysis paper. Problematic
aspects of the method existed, however, and these would lead various
researchers, notably Tversky, to question the appropriateness of MDS for
various types of data. An entirely new method, cluster analysis, would
result from examination of these problem areas, as well as a better

understanding of the mathematics underlying both MDS and CA.

Hierarchical cluster analysis already existed as a concept; indeed, a
basic paper by Johnson (1967), building on work by Ward (1963) as well
as Shepard (1962) and Kruskal (1964a, 1964b), provided an alternate way
to treat similarity within a few years of the first practical MDS algorithms.
Hierarchical clustering and other types of clustering were now viewed as a
way to deal with datasets that gave MDS methods problems. Two of the
most severe problem areas were the presence of exemplars or prototypes
in the dataset, and highly separable dimensions, an "apples and oranges"

similarity situation.

»> 14 4




iChapter One>»»» Introduction

Stress in an MDS configuration will be high (i.e., a poor goodness-
of-fit will occur) if one of the objects in the stimulus set being evaluated is
considered to be an exemplar of a larger class, or considered a prototype.
For example, in the set (fruit, cherry, banana, watermelon, apple, orange,
kiwi], "fruit" will be almost certainly be considered more similar to all the
other objects than any other pair to each other since it is a generic,
prototypical example of the category to which all the other objects belong.
The only way to handle the presence of an exemplar geometrically without
a significant amount of computed stress is by having all the other items
distributed across the surface of a circle/sphere/equivalent higher-
dimensional shape, while the exemplar sits at the center of the
configuration. In general, this type of solution can deal with up to only N+2
items in an N-dimensional space (e.g., in two dimensions have three
objects at the vertices of a triangle with the exemplar at the center of gravity
of the triangle), although specific larger sets of objects might work
Tversky and Hutchinson (1986) analyzed conditions when exemplar
presence would cause difficulties for geometric configurations, and
reanalyzed many prior studies by means of a nearest neighbor approach. In
contrast to a geometric configuration, a tree structure of similarity can deal
easily with the presence of an exemplar by locating the exemplar at the root
node of the tree, while all other objects locate at the end nodes of the

branches.

The other major problem area for traditional MDS, highly separable
dimensions, is a situation where the different dimensions have little or
nothing to do with each other. An example dating back to the great
nineteenth-century psychologist William James is: the moon is like a ball
because they are both round; the moon is also like a gas lantern because

they both illuminate; but we do not think of a ball as being like a gas
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lantern. Similarity in such cases can be thought of as a
comparison/summation function across a range of independent or semi-
independent features. In fact, this view of similarity as a matching process
across a collection of object features led Tversky (1977) to propose cluster
analysis as an alternate approach to similarity measurement. Tversky and
Gati (1982) also demonstrated that for highly separable dimensions, basic
mathematical assumptions of geometric modeling were violated. In
particular, the triangle inequality, which states that for any objects i, j, and
k and the distances D between them d;;+ d;, = d, is violated, because
the "distance" along one dimension has nothing to do with the "distance"
along another for the triangle inequality to be valid, a single distance metric
must operate for all dimensions. Thus, two complimentary approaches to
the analysis of similarity were necessary depending on the type of objects

under study; as Tversky and Hutchinson (1986) state:

“Multidimensional scaling seems particularly appropriate for perceptual
stimuli, such as colors and sounds that vary along a small number of
continuous dimensions On the other hand, clustering representations seem
particularly appropriate for conceptual stimuli, such as people or
countries that appear to be characterized by a large number of discrete

features™

There is a family of CA algorithms, but they all work in like fashion:
given a similarity or distance matrix, some method is used to pick the pair
of stimuli most like each other, group them into a single cluster, and derive
a new reduced matrix. When the process is finished, the stimuli will be
grouped into some sort of tree structure, where the distance between any
pair of objects is related to the length of the path along the various branches

separating them.
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Hebert et al (2006) introduced fuzzy dissimilarity data, the fuzzy
multidimensional scaling and the distance models which dissimilarities are
expressed as intervals or fuzzy numbers. In these models each object is
then no longer represented by a point but by a crisp or a fuzzy region in the
chosen space. Furthermore they proposed two algorithms and illustrated to

determine a fuzzy region in the chosen space.

[11-Use of CA and MDS in Conjunction:

As noted above in the quote from Tversky and Hutchinson (1986),
there are various conditions under which it is more appropriate to use either
MDS or CA. Even when standard MDS works for a given situation,
however, CA can aid the researcher in interpreting an otherwise obscure
set of dimensions. Figure 1 and 2 shows how cluster analysis can assist a
researcher in interpreting the dimensions of a geometric configuration from
an MDS. In figure 1, a reanalysis by mmm of letter similarity data
collected by Kuennapas and Janson (1969), the vertical dimension of the
geometric configuration has rounded letters at the bottom and non-rounded
ones at the top, but the interpretation of the horizontal dimensional is not
obvious at first glance. Using a cluster analysis of the data, shown on figure

2, groupings of various sets of the letters become readily apparent.
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Figure 1
Representation of letter similarity (Kuennapas and Janson, 1969)
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On the other hand, there are some situations where CA gives very
bad fits even when separable dimensions are at work. For example, if the
underlying data structure is a grid, any type of CA will yield a very poor
fit since one point must be considered privileged (the root node of the
clustering tree) and distances between the objects must be computed along
the branches of the imposed tree structure. Figure 3 gives an example: the
circles show the true configuration of the stimuli, with lines and
intermediate nodes (the black dots and circle) connecting them in a tree. It
Is obvious that any two circles adjacent along a row or column should be
rated as equidistant, but when one can move between circles only by
traversing the tree, widely disparate "distances" will be registered. In
practice, the researcher must be careful and explore many possibilities it is
almost always better to use both MDS and CA on the same input data as

cross-checks on each other.

N

Figure 3: Poor Fit for a CA tree due to addition of privileged nodes.
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1.4 The Outline of Research.

This thesis is organized as follows:

Chapter | : An introduction which represents a background on
multidimensional scaling, cluster analysis and use of cluster analysis and
multidimensional scaling in Conjunction, goals of our study and review

studies.

Chapter I1: Measure of proximity which represents different patterns of

proximity measures (similarity and dissimilarity).

Chapter 111: Multidimensional scaling which represents Technique of

multidimensional scaling in terms of concepts and methods.
Chapter IV: Cluster analysis (concepts and methods).
Chapter V : Clustering multidimensional scales.

Chapter VI: An application of cluster analysis and multidimensional

scaling on some data obtained from Benha city car market
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IT. MEASURES OF PROXIMITY

2.1 Introduction:

In data mining, particularly in cluster analysis and multidimensional
scaling, similarity, dissimilarity, and distance measures play an important
role to calculate the proximity between data objects. The similarity matrix

Is constructed from the proximity measure. According to Everitt (1980)

There are many different measures available in the literature to
calculate the proximity between data objects. One of the reasons for this
variety is that these measures differ on the data type of the objects present
in a given dataset. For instance, it follows that the proximity measures that
are suitable for numeric variables may not be suitable for nominal data, as
the attribute values from these two data types are represented differently.
Therefore, a different set of measures is required to handle binary or
nominal data. Moreover, the measures also differ on the properties they
exhibit.

2.2 Similarity, Dissimilarity, and Distance measures:
2.2.1 Similarity

Similarity(s) is a numerical measure that represents the similarity (i.e.
how alike various features and attributes). A similarity measure Iis
considered a metric if it produces a higher value as the dependency
between corresponding values in the sequences increases. A metric
similarity  satisfies the following properties (Theodoridis and
Koutroumba (2009).

1. Limited Range: S(X,Y) < S,, for some arbitrarily large number S,,.
2. Reflexivity: S(X,Y) =S, ifandonly if X =Y.
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3. Symmetry: S(X,Y) = S(Y,X).
4. Triangle Inequality: S(X,Y)S(Y,Z) <[S(X,Y) +S(Y,2)]S(X,2).
S, Is the largest similarity measure between all possible X and Y

sequences.

This measure usually returns a non-negative value that falls in
between 0 and 1. However, in some cases similarity may also range from -
1 to +1. The Pearson Coefficient Correlation and the Angular Separation,
are two examples where the similarity may take a negative value. When
the similarity takes a value zero (0), it means that there is no similarity
between the objects and these objects are very different from one another.
In contrast, the value (1) denotes complete similarity, emphasizing that the

objects are identical and possess the same attribute values.

2.2.2 Dissimilarity

The dissimilarity measure [Webb (2002)], [Han and Kamber
(2006)] is also a numerical measure, which represents the discrepancy or
the difference between a pair objects. If two objects are very similar then
the dissimilarity measure will have a lower value, where as if the objects
are very different from one another, this measure will return a higher
numeric value. Therefore, the measure is reversely related to the similarity
measure. As such, when the similarity between two objects is high, the
dissimilarity will be low and vice versa. As with the similarity score, the
dissimilarity value also fall into the interval [0,1], but it may also take

values ranging from —1 to +1.

2.2.3 Distance
The term distance, which is also commonly used as a synonym for
the dissimilarity measure [Meila and Shi (2000)], computes the distance
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between two data points in a multi-dimensional space. The distance
measures always take a positive value between 0 and c. The distance
measures also satisfy the following four properties [Kandil, A. (2011) and
Larose (2000)]:

1. d(x,y) = d(y,x), for all points x and y. For instance, the distance from
point x to point y is same as the distance from point y to point x.

2. d(x,y) =0, if x =y. Distance is only 0 when both the coordinates are
same.

3. d(x, y) > 0, for all points x and y. The distance is always non-negative.
4. d(x,y) < d(x,z) + d(z,y), for all points x, y and z. This is also known as
the Triangle Inequality. This implies that introducing a third point may
never shorten the distance between the two other points [Larose (200)].

2.2.4  The relation between proximity measures:

Similarity and distance are, in a sense, inversely related to one
another. When the distance in between two objects is large (meaning that
the objects are different from one another), the similarity will be low.
Conversely, when the distance is low the similarity will be high. Since it is
inversely related, a common way to transform a distance measure to a

similarity measure is by using the equation

1
Sij = d_u (2.1)

Where
I and j are two objects.

One of the problems with this equation is that the similarity value will not

always fall into the range [0,1].
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For instance, if the distance between two objects is very small, such as

d;;=0.25, then the similarity value for these two objects will be
Sij= é =4
There are various other ways to transform a distance or dissimilarity
measure to a similarity measure such that the values for similarity measure
ranges from 0 to 1.
If dissimilarity scores fall in between 0 and 1 then similarity is calculated
using the following formula:
similarity = 1 — dissimilarity (2.2)

However, if the value for a distance measure is greater than 1, then
there are different ways to transform a distance measure into a similarity
measure. One such is the function given in Equation 2.2. This function is

also known as the Gaussian function. [Han and Kamber (2006)]

) (2.3)

d(x,y)?
2x62

s(x,y) = exp(—
Where
1. s(x,y) = similarity between points x and y.
2. d(x, y) = distance between points x and .
3. 6 = a user specified scaling variable. Shi and Malik suggested that
the value of o is setto 10 to 20 percent of the total range of the values

obtained from the distance function d(x, y).

There are several other ways to convert a distance measure into a similarity
measure, as stated below:

1

1+d(x,y)2 (2'4)

s(x,y) =

1
14+d(x,y)

s(x,y) = (2.5)
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s, y) =1-d(xy) d(x, y) €[0.1])  (26)

2.3 Proximity Measures for Binary Variables:

Binary variables take only two values, such as: 0 (negative) and 1
(positive), yes (positive) and no (negative), or agree and disagree. These
variables are usually categorized into two types:

1) Symmetric binary variables where both the positive and the negative
values carry equal weight

2) Asymmetric binary variables where the positive and the negative values
do not carry equal weight, and one (usually the positive value) carries more
weight than the other.

Let x and y be two binary data points. Each proximity measure for binary
data is represented by four variables (a, b, c, d):

a = number of occurrences of x;= 1 and y;= 1 (positive matches),

b = number of occurrences of x; = 0 and y;= 1 (disagreement),

¢ = number of occurrences of x; = 1 and y; = 0 (disagreement),

d = number of occurrences of x;= 0 and y;= 0 (negative matches),

and a + b + ¢ + d =p (total number of attributes in x and y).

Therefore, numerous similarity coefficients were proposed by
various researchers to calculate the proximities, which are also equally
applicable to fields including data mining and statistics. A number of
such coefficients give equal weight to the positive and negative values,
whereas several coefficients ignore the negative matches. As such, for the
same set of data, different coefficients may give different similarity
values [Everitt (1980)].

We use the sample dataset given in Table 2.1 to compute the coefficients.
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Object ID | Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4
Object 1 0 1 1 1
Object 2 1 1 1 1
Object 3 1 0 0 0

Table 2.1: Sample dataset for binary data type.

2.3.1 Jaccard Coefficient:

The Jaccard coefficient does not consider the negative matches. In
terms of the four variables defined above, the Jaccard similarity coefficient
is defined by Equation 2.7. Recall that, a denotes the number of positive
matches whereas, b and ¢ denote the total number of disagreements.

a

] = — 2.7
Slm]accard a+b+c ( )
. b+c
dlS]accard = a+b+c (28)

The values range from 0 to 1. The maximum similarity is achieved when b
= ¢ = 0 and the minimum similarity is achieved when there are no positive

matches (when a = 0).

Example 2.3.1. The dissimilarity and the similarity between Object 1 and
Object 2:

. 1+0 1
dlslz - - - = 025
' 3+1+0 4

Siml'z - 1 - 0.25 - 0.75
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The dissimilarity and the similarity between Object 1 and Object 3:

. 1+3 4
dlSl’3 - = - = 1.0

0+1+3 4

Sim1’3=1—1=0

2.3.2 Czekanowski Coefficient:

The Czekanowski similarity coefficient is also known as the Dice
or Sorenson coefficient. The function is given in Equation 2.10. Recall that,
a denotes the total number of positive matches. The total numbers of
disagreements are denoted with the variables b and c.

. 2a
SMczekanowski — 2a+b+c (29)
. b+c
dlSCzekanowski = 2a+b+c (2 10)

The coefficient is similar to the Jaccard coefficient. However, double
weight is given to the variable a which denotes the total number of
occurrences of the positive matches. By giving twice the weight to a, the
function gives more emphasis to the positive matches. Variable d (when x
=0 and y = 0) is not present in this measure.

Example 2.3.2. The dissimilarity and the similarity between Object 1 and
Object 2:

140 1
2x34+14+0 7

dis; , = = 0.1429

sim,, =1 —0.1429 = 0.8571
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The dissimilarity and the similarity between Object 1 and Object 3:

e 1¥3 4
B13T 5 0+14+3 4

Sim1,3=1—1=0

2.3.3 Sokal and Sneath Coefficient:

Sokal and Sneath proposed a similarity coefficient that is similar to
the ones proposed by Jaccard and Czekanowski. This measure is defined
as:

=— (2.11)

‘2—l+b+c T a+2(b+0)

SUMgpkal and Sneath proposed —

b+c
a
2+b+c

dlSSokal and Sneath proposed — (212)

However, in contrast to the Czekanowski coefficient which gives
double weight to the positive matches (a), the Sokal and Sneath coefficient
gives double weight to the disagreements in the denominator. The
disagreements are represented by the variables b and ¢ as denoted earlier.
Thus, the Sokal and Sneath coefficient gives twice the weight on the
combined disagreements denoted by b + c¢. By doing so, the coefficient
actually gives slightly less weight to the positive matches compared to the
Jaccard and Czekanowski coefficients

Example 2.3.3. The dissimilarity and the similarity between Object 1 and
Object 2

1+0 2

=-=04
1/2%34+1+40 5

dis; , =
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Siml‘z = 1 - 0.4‘ - 0.6

The dissimilarity and the similarity between Object 1 and Object 3:

e 1¥3 4o
P13 T2 04143 4

Slm1’3=1—1=0

We suggest a new measurement which can represent all previous measures.

. a
SiMm-generat = i ag +™M 20 (2.13).
. b+c
dlSm—general = ma+h e ,m =0 (2.14).

2.3.4 Simple Matching Coefficient:

The Simple matching coefficient [Webb (2002)], also known as the
Hamming distance, denotes the proportion of variables for which two
variables have the same value [Webb (2002)]. As mentioned earlier, the
variables a and d denote the total number of positive and negative matches,
respectively. The variables b and c denote the total number of

disagreement.

a+d

Slmsimple matching coef ficient = a+b+ctd (215)
. b+c
dlSSimple matching coefficient — a+b+c+d (216)

The Simple Matching Coefficient considers both, the positive
matches (a) and the negative matches (d). Moreover, it gives equal weight

to the positive and negative matches.
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Example 2.3.4. The dissimilarity and the similarity between Object 1 and
Object 2:

dis, , = ——— = =0.25

3+1+0+0 4

Siml’z == 1 - 0.25 = 0.75

The dissimilarity and the similarity between Object 1 and Object 3:

. 143 4
dlSLg - = - = 1.0

0+143+0 4

Sim1’3=1_1=0

2.3.5 Russell and Rao Coefficient:

The Russell and Rao similarity coefficient is sometimes known as
the Positive matching coefficient [Webb (2002)]. The similarity function
is defined in Equation 2.15.

a

SUM Russell and Rao = = (2.17).
: b+c+d
diSs Russell and Rao = atbtctd (2.18).

We suggest to write Russell and Rao coefficient in another formula

= (2.19).

sim =
Russell and Rao agrement values+disagrement values

d+c+d

dis = 2.20).
Russell and Rao agrement values +disagrement values ( )

The Russell and Rao coefficient gives the proportion of the positive

matches against the total number of variables (including the negative
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matches). The coefficient is also sensitive to the meaning of positive and
negative values. If the values are interchanged, then it will represent the
proportion of the negative matches. The Russell and Rao coefficient
achieves the maximum similarity when b =c¢ =d = 0 (when there are only
positive matches present) and scores the minimum when  a =0 (when

there are no positive matches).

Example 2.3.5. The dissimilarity and the similarity between Object 1 and
Object 2

. 1+0+0 1
dlSl 2 = = - :025
’ 4

3+1+0+0

sim;, =1—-0.25=0.75

The dissimilarity and the similarity between Object 1 and Object 3:

1+3+0 4
0+1+3+0 4

=1.0

dis; 3 =

Sim1’3=1_1=0

2.3.6 Rogers and Tanimoto Coefficient:
The coefficient proposed by Rogers and Tanimoto is defined in
Equation 2.17.

(a+d)

. _ 2 _ a+d
sim Rogers and Tanimoto — (a:d)+b+c = a+d+2(b+0) (2.21).

(2.22).

dis Rogers and Tanimoto

The Rogers and Tanimoto coefficient is similar to the Simple
Matching Coefficient. Where in matching Coefficient, the similarity

coefficient considers both the positive and negative matches in the
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equation and gives equal weight to them. However, in contrast to the
Simple Matching Coefficient, the Rogers and Tanimoto coefficient gives
double weight to the variables that represent the disagreements in the
denominator (i.e. the variable b and c) [Sokal, R., and Sneath, P. (1963)].
We suggest anew coefficient from Rogers and Tanimoto coefficient
defined in Equation 2.17.

m(b + c)
di = ,m>0 2.23).
lsmgeneral (a + b) + m(b + C) m ( )
_ a+d
SUM 1 general = ,m>0 (2.24).

a+d+m(b+c)

agrement values

agrement values +m(agrement values)

Example 2.3.6. The dissimilarity and the similarity between Object 1 and
Object 2:
14+0 2

Sl'm1‘2 - 1 - 4‘0= 06

The dissimilarity and the similarity between Object 1 and Object 3:

» 1+3  _4_.,
is —=1.
o (“”+1+3 4

Sim1’3=1_1=0

»> 34




pChapter two >>> Measures of proximity

2.4 Proximity Measures for Numeric Variables:

There exist several distance measures for numeric or real-valued data.
We present our discussion based on the measures presented in [Webb
(2002)], [Pedrycz (2005)], [Teknomo ( 2007)] and [Kandil, A. (2011)].
For the purpose of clarification, we provide an example that shows the
calculations foreach of these distance measures. We use the sample dataset
given in Table 2.2, which contains three data objects, and each of the

objects is represented with four features.

Object ID Attribute 1 Attribute 2 Attribute 3 Attribute 4

Object 1 10 5 8 2
Object 2 11 6 9 1
Object 3 1 20 0 8

Table 2.2: Sample dataset for numeric data type.

2.4.1 Euclidean Distance:

The Euclidean distance is one of the most widely used distance
measures in the area of cluster analysis and multidimensional scaling
[Everitt (1980)]. The distance, in this case, is the straight-line distance
between a given pair of data points. The distance is calculated as the
summation of the differences between the coordinates of the data points

x; and x;. The function is denoted as Equation 2.18.

= Zko1 O — %) (2.25).

Example 2.5.1. The distance between Object 1 and Object 2 is calculated

as.

di,=/(10-11)2+(5-6)2+(8—-9)2+(2—-1)2=2
The distance between Object 1 and Object 3 is calculated as:
diz=+/(10—1)2+ (5—-20)%2+ (8 —0)2 + (2 — 8)? =20.1494
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3.4.2 Manhattan Distance:

The Manhattan distance is also commonly known as the city-block
distance. The Manhattan distance measure would travel from one point to
another as if a grid-like path is followed. It is the summation of absolute

differences between the coordinates of two data points (x; and x;.).

dxix,- = kzllxik - xjk| (2.26).

Example 2.4.2. The distance between Object 1 and Object 2 is calculated
as:

di,=110—11|+|5—6|+ |8 — 9|+ [2— 1| =4

The distance between Object 1 and Object 3 is calculated as:
dys=[10—1|+|5—20|+ |8 —0|+ |2 —8]| =38

2.4.3 Minkowski Distance:
The Minkowski distance is defined in Equation 2.27

1

Ayix; = ( | — x,-kli)A (2.27).

In Equation 2.20, 1 may take any value greater than 0. Depending on the
value of A, the Minkowski distance may take several different forms. For
instance, when A =1, the Minkowski distance is similar to the Manhattan
distance, whereas when A = 2, the Minkowski distance is similar to the
Euclidean distance [Kandil, A. (2011)]. A large value of A indicates larger
difference. However, a larger value of A also indicates that the largest scale
would dominate the total distance.

Example 2.4.3. The distance between Object 1 and Object 2 is calculated
as (when A = 3):

di, =3[10—113+ 1[5 -6 +[8 =93 + |2 — 1|3 =1.587
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The distance between Object 1 and Object 3 is calculated as (when
A=3):

dis=3/110—1]3+[5— 203 +[8—0[3 + |2 — 8|3 =16.9061

2.4.4 Chebyshev Distance:

The Chebyshev distance is a special case of the Minkowski distance
with A =o0. In this case, the distance is measured as the distance between
the coordinates of two data points where the absolute distance between the

points in any single dimension is maximized.

Ayp; = max |xy — xjk| (2.28).

Example 2.4.4. The distance between Object 1 and Object 2 is calculated
as:

di, =max(|10 — 11|, |5—6/,18 —=9],|2— 1) =max (1, 1,1, 1) =1
The distance between Object 1 and Object 3 is calculated as:

d, 3 = max(|10 —1[,|5—20[,[8 — 0], [2 — 8]) = max (9, 15, 8, 6) = 15

2.4.5 Canberra Distance:
The Canberra distance is the summation of the series of fractional

differences between coordinates of two data points (x; and x;). The

Canberra distance is defined as Equation 2.29.

—yn e (2.29).

Ay = D=
XX =T Ligetox e |
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The numerator of this equation signifies the difference between the objects,
whereas the denominator normalizes the difference. Thus, the distance for
each dimension may at most be 1.

Example 2.4.5. The distance between Object 1 and Object 2 is calculated

as.

d __l10-11l+|5-6l+I8-9l+[2-1]
L2 7 110+11]+I5+6]+I8+9]+|2+1]

=0.5307

The distance between Object 1 and Object 3 is calculated as:

d __l10-1l+Is-20l+I8—0l+[2-8l
L3 7 |1o+1l+I5420/+I8+0l+]2+8]

=3.0182

2.4.6 Mahalanobis Distance:

The Mahalanobis distance [Wikipedia (2008)], considers the
correlation between variables. The Mahalanobis distance measure uses the
covariance matrix to measure the variance and the correlation between the
objects. Let xand ybe two vectors and C~'be the inverse covariance
matrix. Then the Mahalanobis distance is calculated as:

d (%, )=y &=y FZ -7 (2.30).
The main difference between the distance measures discussed so far and

the Mahalanobis distance measure is that it considers the correlation
between the variables. [Berkhin ( 2002)], [Xu and Wunsch (2005)],
[Kandil, A. (2011)].

However, one of the drawbacks of using the Mahalanobis distance
measure is its high computational cost, which is due to the calculation
required to construct the inverse covariance matrix. The Mahalanobis
distance may not be suitable for high-dimensional datasets as covariance
estimation may be inaccurate [Ghosh (2003)].

>» 38 5




pChapter two >>> Measures of proximity

Example 2.4.6. The covariance matrix (C~1) for the data in Table 2.2 is
(as calculated by MATLAB):

30.3333 —45.6667 27.1667 —20.8333

—45.6667 70.3333 —40.8333 31.1667
27.1667 —40.8333 24.3333 —18.6667

20.8333 31.1667 —18.6667 14.3333
The distance between Object 1 and Object 2 is calculated as:
x-y)=[-1 -1 -1 1]
dyip =
J=1 -1 -1 1] = C'x[-1 -1 -1 1]T=1.9828

The distance between Object 1 and Object 3 is calculated as:
xX-y)=1[9 -15 8 —6]
diz =

JO —-15 8 —6]* CTx[9 —15 8 —6])7 =38609

2.4.7 Angular Distance:

The Angular Separation or Cosine Distance [Teknomo ( 2007)],
measures the angular distance between the coordinates of two data points
(x; andx;). Even though, this measure is called the Angular distance, it is a
similarity measure rather than a distance measure. It represents the cosine
angle between the unit vectors in the direction of the two pattern vectors
[Webb (2002)] and thus the value lies between -1 and +1 as of the range of
cosine angle. Though the angles are measured, it is meant to give the linear

distance between the data points. A higher value of this function denotes
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that the data objects are very similar to one another. The similarity and

distance measure between object x; and x; is given below:

Zﬁ=1 Xik - Xjk (2.31).

ST awm . o
ey Xik® Lo X ji?)2

d, . =1— — Zk=a¥ikXjk 2.32).

ixj n 2y n 2 1

Type equation here.
The Angular distance is also scale invariant, and thus, the different
units do not affect the result. The Angular distance considers the relative
distance between the objects from a fixed point (the origin).

Example 2.4.7. The distance between Object 1 and Object 2 is calculated
as:

(10x11)+(5*x6)+(8x9)+(2x1)
_\/(102 +52482422)x (112 4+ 62 + 92 + 12)

dy,=1 = 0.0036

The distance between Object 1 and Object 3 is calculated as:

(10x1)+(5%x20)+ (8x0)+ (2% 8)
diz=1- = 0.5794
' V(102 + 52 4+ 82 + 22) % (12 + 20% + 02 + 82)

2.4.8 Pearson Correlation Distance:

The Pearson correlation coefficient [Teknomo ( 2007)] measures
similarity between data points. The values of this function ranges from -1
to +1. Since this measurement shows whether two data points are linearly
related or not, a value of 1 shows that the points are lying on the same line
and are positively correlated. A value of -1 indicates that the points are
negatively correlated, whereas 0 means there is no linear correlation

between the data points.
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X (X ) (X=X
Sij= k=1(Xik—x7 ) ( jk j) ; (233)
Q=1 (Kik—)? Qo (X jk—x7)2)2
Where
—_1yn —_1yn
—— _ . , —_— _ x,
Xy n k_lxlk. x] n “k=1 jk .

The similarity function may be changed to correlation distance measure by
subtracting from 1.

1. Y= (ire—zy ) -(xjx=27) (2.33).

g~ 1
Q=1 @ik—37)? Bgay (jr-57)?)2

d

The Pearson coefficient correlation is used in the areas of microarray
analysis and the document cluster analysis, amongst others. Since this
distance measure considers the correlation between the objects, the outliers

may affect the end results.

Example 2.4.8.
— _10+5+8+2 — _114549+1 — _1+420+0+8
Xy = =6.25 , X, ==, T8’ X3 = 7.25

The distance between Object 1 and Object 2 is calculated as:
d1,2 :l'

(10-6.25)x(11-6.75)+ (5-6.25)%(6-6.75)+(8-6.25)%(9-6.75)+ (2-6.25)+(1-6.75)
J1(10-6.25)2 +(5-6.25)2 +(8—6.25)2+ (2-6.25)2]x[(11-6.75)2+(6-6.75)2+(9-6.75)2 +(1-6.75)?]

—1- 45.2498 — 0092

5.6680

The distance between Object 1 and Object 3 is calculated as:

d1'3 =1-

(10-6.25)+(1-7.25)+ (5-6.25)x(20—7.25)+(8-6.25)x(0-7.25)+ (2-6.25)«(8-7.25)
J1(10-6.25)2+(5-6.25)2 +(8—6.25)2+ (2-6.25)2][(1-7.25)2+(20-7.25)2+(0-7.25)2 +(8—7.25)2]

1.57

—55.25 _
96.7586
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2.5 Proximity Measures for Mixed Variables:

In the previous section, the discussion mostly focused on datasets of
a particular variable type (e.g. binary). Nevertheless, in practical
applications, it is possible to have more than one type of attribute in the
same dataset. For instance, a dataset may have numeric and binary
attributes to describe the objects [Kandil, A. (2011)]. In such cases, the
conventional proximity measures for these two data types may not work
well, as they are suitable to deal with one kind of variable at a time.
Therefore, some similarity measures are proposed that incorporate
information from various datatypes into a single similarity coefficient. The
coefficients present in literature to calculate the similarity for mixed data
type are, the Gower's General Dissimilarity Coefficient [Han& Kamber
(2006)] and the Laflin's General Coefficient [Laflin (1998)], [Kaufman&
Rousseeuw (2005)].

2.5.1 Gower's General Dissimilarity Coefficient:
The dissimilarity measure was introduced by Gower (1971). The

function is defined as follows:
u8iindii
dyy = (334)
Where
. i,j are objects
Il.  uis the variables

iii. X, 8;, is the number of variables

iv. The |ndlcat0r 5ijU — o lf ;:}iler]mi;i nonmising ror variabel u

V. d;j, is the distance between object i and j for a variable u
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d;j, is calculated using different distance measures that already exist for

various variables types. For example:
* If'u is Numeric

|xiu — Xju

yu maxpXy, —mingxy,

where
h runs over all the non-missing objects of variable u.

* If u is binary

d-- _ {0 lf xiu=xju
Ju 1 otherwise

« Ifu is Ordinal
1.  First compute the rank r;,, for object i assuming that the attribute
u has M,, ordered statesand r;,, € 1,...,M,
2. Replace x;,, by its corresponding rank.

3. Normalize r;,, by using the following formula:

Zyy =2 . Z,, €[0.0,1.0].

M, -1
4. Treat Z;,, asanumeric variable and a distance metric for the
numeric variable is used to calculate the distance between the

objects.

* If'u is Ratio-scaled

(According to Han and Kamber (2006)], "a ratio-scaled variable makes
a positive measurement on a nonlinear scale, such as an exponential
scale.™), then the distance between its objects may be calculated in one of

two ways.
Firstly by performing a logarithmic transformation and treating this

transformed data as numeric values.
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Secondly, by treating u as continuous ordinal data and calculating the
distance as mentioned above.

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6
(Numeric)  (Numeric)  (Nominal)  (Nominal) (Ordinal) (Ordinal)

Object 1 12 10 A A Good First
Object 2 9 12 A A Excellent First
Object 3 3 4 B C Fair Third

Example 2.5.1. For this example, we used a dataset (Table 2.3) similar to
the one given in [Han& Kamber (2006)].
Table 2.3: Sample dataset for mixed data type.

To calculate the similarity between Object 1 and Object 2; we proceed as
follows:
Attribute 1 (Numeric):

max = 12 and min = 3

[12—-9| _
[12-3]

0.3333

d, ,(Attribute 1)=

Attribute 2 (Numeric):

max = 12 and min = 4

|10_12|—0.25

l12-4]

Attribute 3 (Nominal):

d, ,(Attribute3) = 0

Attribute 4 (Nominal):

d, ,(Attributed) =0
Attribute 5 (Ordinal):
Rank: Fair =1, Good = 2 and Excellent=3and M,, =3

The normalized values for Attribute 5 will be:

d4 ,(Attribute2)=
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2-1

Object 1 ==—=10.5

object2 —34 =1

3-1

object3 ==1=0

3-1

dq, Z(AttrlbuteS)—| 0511

-ol
Attribute 6 (Ordinal):

Rank: Third =1, Second = 2 and First=3 and M,, =3

The normalized values for Attribute 6 will be:

=0.5

Object 1 =—=1

object2 = =1

3-1

object3 = —3 1 -0

p—\

[1- 1I

d, ,(Attribute 6)— =0

The total dissimilarity between Object 1 and Object 2 are thus calculated

as,

d1,2 (1%0.3333)+(1%0.25)+(1 *0)+(1*1)+(1*0.5)+(1*0)=1.o:33 — 0.18055

1+1+1+1+1+1

Next, the similarity may be derived by using Equation 2.5 as follows:
similarity, ,= 1- 0.18055= 0.81945

To calculate the similarity between Object 1 and Object 3; we proceed as
follows:

Attribute 1 (Numeric):

max = 12 and min = 3

[12-3]_

d, s(Attribute 1)— P 1

Attribute 2 (Numeric):

max = 12 and min = 4

[10-4]_6

= —O 75
—4]

dq, 3(AttrlbuteZ)—
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Attribute 3 (Nominal):

d, ;(Attribute3) = 1

Attribute 4 (Nominal):

d, s(Attributed) = 1

Attribute 5 (Ordinal):

Rank: Fair =1, Good = 2 and Excellent = 3 and M,, =

The normalized values for Attribute 5 will be:

Objectl— = 0.5

| w

object2 = 1o

3-1
1-1
3-1

dy 3(Attrlbut5)—

object3 =— =0

l.o5—o0]
-ol

Attribute 6 (Ordlnal):
Rank: Third =1, Second = 2 and First=3 and M,, =3

The normalized values for Attribute 6 will be;

=0.5

Object 1 :ﬂ =1

| w

object2 = 1og

3-1
1-1

object3 =—=0

P—‘ |

[1- oI

dq, 3(Attr|bute2)— =1

The total dissimilarity between Object 1 and Object 3 are thus calculated

das,

d1,3 (1*1)+(1*0.75)+(1*1)+(1*1)+(1*0.5)+(1*1):5.25 — 0.8750

1+1+1+1+1+1

Next, the similarity may be derived by using Equation 2.5 as follows:
similarity, ;= 1- 0.8750= 0.1250
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2.5.2 Laflin's General Coefficient:

The Laflin's coefficient is measured as follows. Let there be N, Binary
attributes and N, Numeric attributes in a dataset. Let S; and S, be the
similarity measures calculated for the Binary and the Numeric data
respectively using some existing similarity measures (as discussed in
Section 2.3 and Section 2.4 respectively). Then Laflin's coefficient [Laflin
(1998)] is calculated as follows:

SunT (2.35).

This function may be extended to include additional data types in a similar
manner. For example, if each instance in a dataset contains four types of
variables (i.e. Binary, Numeric, Ordinal and Nominal) then N;, N,, N;and
N, will represent the total number of attributes for these four types of
variables, respectively. Next, we calculate the similarity between each pair
of objects using existing similarity measures, as discussed earlier, for each
of these set of attributes separately. Let S,, S,, S;and S,

be the similarity measure associated with the set of attributes N, N,, N;and
N,, respectively. All these similarity values should be scaled so that they
fall in between 0 and 1. The general similarity coefficient for this mixed

set of attributes is calculated as:

N1.51+Ny.52+N3.53+N,.54
S n= 2 A 2.36).
) Ny +Ny+N3+N, ( )

This equation ensures that each attribute makes an equal contribution to the
measure of similarity between two objects i and j [Laflin (1998)].
Example 2.5.2. For the dataset given in Table 2.3, Laflin's coefficient is
calculated as follows.

There are three different variable types in this dataset each type containing
2 variables. Thus,N; = N, = N; = 2.

To calculate the distance between nominal variables we use the formula
given in [Han& Kamber (2006)]:
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p—-m

Where

p is the total number of variables and

m is the number of variables for which i and jhave the same value.

For numeric variables, the Euclidean distance measure as defined in
Equation 2.18 is used and for all the cases distance measure is converted
into a similarity measure by using Equation 2.4.

The similarity between Object 1 and Object 2 is calculated as follows.

Numeric variables:

d; =+/(12—9)2+ (10 — 12)* = 3.4641
1 1

— - = 0.2240
1+d, 1+3.4641

S1

Nominal variables: P = 2 (total number of variables of type nominal)

2-2
d2= T— O
1 1

= = =1
2T 1+d, 1+0

Ordinal variables:
Attribute 5 (Ordinal):
Rank: Fair =1, Good = 2 and Excellent=3and M,, =3

The normalized values for Attribute 5 will be;

N

l-05

1

Object 1 =

3

w
=

object2 =— =1

oW
R

— =0

3.1

Attribute 6 (Ordinal):

object3 =
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Rank: Third =1, Second = 2 and First=3 and M,, =3

The normalized values for Attribute 6 will be:

Object 1 :2;1 =1

w

object2 =22 =1

oW
SN

object3 =—=0

w
=

d;=+(05—1)2+(1-1)2=05

1
2T 1+d, 1+05
When substituting the values of S;, S,and S;in Equation 2.30, we obtain:

o (2%0.2240)+ (2* 1)+ (2 * 0.667)
similarityx, , = 1212 = 0.6302

To calculate the similarity between Object 1 and Object 3, we proceed as

= 0.6667

follows.

Numeric variables:

d; =+(12—-3)2+ (10 — 4)2 = 10.8167

1 1
= = = (0.0846
1T 14 d, 1+10.8167
Nominal variables:

2-2

dy-—-=1
1 1

0.5

2T rd, 1+1
Ordinal variables:
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d;=+/(0.5—0)2+(1-0)2=1.118
1 1

= = = 0.4721
T 1+d, 1+1118

When substituting the values of S;, S,and S;in Equation 2.30, we obtain:

milarit (2%0.0846)+ (2% 0.5) + (2 x0.4721) 0.352
similarityx, , = = 0.
’ 2+2+2
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IIT. MULTIDIMENSIONAL SCALING

3.1 Introduction:

Multidimensional scaling (MDS) is a set of methods for discovering
hidden structures in proximity (similarity or dissimilarity) measures
between pairs of objects (Borg and Groenen2005). Its primary objective
is to display multivariate data in a lower dimensional space (usually
Euclidean). The mapping roughly preserves the most important metric
relationships of the original data and inherently clusters the data.

The MDS attempts to estimate the coordinates for each object in a
lower dimensional space such that the distance for each pair matches the
original dissimilarity measure as closely as possible. For example, MDS
can be used to construct a 2-dimensional map based on distances between
different locations. The estimated configuration of the objects and the
dimensionality are two important issues for MDS. One main application of
MDS is visualization (Borg and Groenen 2005), where we can represent
a complex set of similarities or dissimilarities in a graphical map that is
easier to see. Another application is exploration, where we can explore the
main dimensions or clusters underlying the dissimilarities. MDS has its
roots in the social and behavioral sciences. It has been widely used in many
fields including the mapping of computer usage, the dimension reduction
of marketing segmentation, the layout of sensor networks, and recently the
construction of antigenic maps (Borg and Groenen 2005, Garten, Davis,
Russell and Smith 2009).
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3.2 What is multidimensional scaling?

In many situations, we have data on the interrelationships between a set
of objects. These interrelationships might be, for example:
* Distances or the travel times between cities
» Words shared between members of a group of languages
* Frequencies with which libraries lend items to each other
* Frequencies with which journals cite each other
» Similarities between shades of colors
* Correlation between adjectives used to describe people.
In each of the cases listed above, the data take the form of a matrix D,
whose components d;; represent some measure of the similarity or
dissimilarity between object i and object j. Each case is an example of a
general and common situation. It would be useful to produce a mapping of
the objects.
Multidimensional Scaling (MDS) Multidimensional scaling (MDS) [
Borg and Groenen (2005), Kruskal and Wish (1978), Torgerson
(1952)] is a general term that refers to techniques for constructing a map
of generally high-dimensional data in to a target dimension(typically a low
dimension)with respect to the given pairwise proximity information.
Mostly, MDS is used to visualize given high dimensional data or abstract
data by generating a configuration of the given data which utilizes

Euclidean low-dimensional space, i.e. two-dimension or three-dimension.

Generally, proximity information, which is represented as an n xn
dissimilarity matrix (A= [8;;] ), where n is the number of points (objects)
and §&;; is the dissimilarity between point i and j, is given for the MDS
problem, and the dissimilarity matrix (A) should agree with the following

constraints:
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(1) symmetricity (5;; = 6;;)

(2) nonnegativity (8;,;> 0)

(3) zero diagonal elements(s;; = 0).

The objective of the MDS technique is to construct a configuration
of a given high-dimensional data into low-dimensional Euclidean space,
where each distance between a pair of points in the configuration is
approximated to the corresponding dissimilarity value as much as possible.

The output of MDS algorithms could be represented asan n xm
configuration matrix X, whose rows represent each data point x; (i = 1,
...,n) In m-dimensional space. It is quite straight forward to compute the
Euclidean distance between x; and x; in the configuration matrix X, i.e.
d;; =||; — x; ||, and we are able to evaluate how well the given points are
configured in the m-dimensional space by using the suggested objective
functions of MDS, called STRESS[Kruskal (1964)]or
SSTRESS[Takaneetal. (1977)].which are defining by the following
definition:

STRESS difinition 6 (X) = ¥ < j<n Wy (d;;(x) — 8;;)? (3.1)
SSTRESS difinitiona?(x) = Yic jeny wij [(di;(0)? — (8;)?]° (3.2)
wherel <i<j<N and w;; is a weight value, so 1 = w;; >0.

As shown in the STRESS and SSTRESS functions, the MDS problems
could be considered to be nonlinear optimization problem, which

minimizes the STRESS or the SSTRESS function in the process of

configuring an L-dimensional mapping of the high-dimensional data.

3.3 Multidimensional scaling methods:

Multidimensional scaling techniques can provide metric or non-

metric solutions for the definition and interpretation of the object space.
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Metric multidimensional scaling can be classical MDS (principal
coordinates analysis) or least squares scaling.

In metric scaling, the object space distances must match as closely
as possible the proximities of the proximity matrix; in metric property
analysis, the vector orideal point model must fit the degrees of the attribute
for each object as closely as possible.

If 5;; satisfies the triangle inequality (8;; < 6;, +04;), the Euclidean
distances d;; between these coordinates match or nearly match the original

dissimilarities. This is the metric MDS (Gordon, 1999).

Non-metric scaling is less restrictive than metric scaling. Instead of
exactly matching the proximities, the object space distances must preserve
only the ordering of the proximities; that is, if the proximity between
objectsiand j is greater than that between objects k and I, then the distance
between objects i and j must be greater than the distance between objects
k and | in the object space. Similarly, in non-metric property analysis, the
vector or ideal point model must fit only the ordering of the degrees of the
attribute; that is, if the attribute degree for object i is greater than that of
object j , the property model of the attribute attempts only to preserve this
ordering.

If §;; is an unknown monotonic increasing function ;= f(d;;), Where
d;; is the Euclidean distance between objects iand j. &;; is The rank order
of Euclidean distances between objects i and j in the new configuration

match the original rank order of dissimilarities 6,;, no matter &, ;satisfies

ijo
the triangle inequality or not. This is the nonmetric MDS (Gordon, 1999).
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Metric least squares scaling and the nonmetric MDS method find a
suitable configuration of points by minimizing a certain loss function.
Classical scaling uses spectral decomposition on a doubly centered matrix
of dissimilarities to find a lower dimensional display space (Gower and
Hand, 1996).

The decision to use metric or non-metric MDS depends on the nature
of the proximity and attributes data. If the data represent quantitative
evaluations, then metric analysis is preferred. If the data consists of
rankings (which do not have absolute quantitative value), non-metric
analysis must be used. If metric analysis does not provide meaningful
solutions, non-metric analysis is often applied on the chance that a more
easily interpreted solution may be obtained. Usually, though, there is little
difference between metric and non-metric solutions to the same proximity
matrix. Some MDS programs provide statistical significance tests which

are meaningful only for metric analysis (Gower and Hand, 1996).

3.3.1 Metric multidimensional scaling:

The purpose of the metric MDS is to find a new configuration (or
coordinates) probably in a low dimensional space, such that the Euclidean
distance of any pair of the new coordinates closely approximates the
prescribed value. Forexample, how can we draw a map of Egypt if we only
know the distances between all pairs of Egyptian cities?.

To complete the metric MDS, a principal coordinates analysis is
employed first to find a new configuration from the given dissimilarity
matrix. Then, a least squares scaling is applied afterwards to minimize the
disparities between the original data's dissimilarities and the new

configuration's dissimilarities.
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3.3.1.1 Principal coordinates analysis (classical MDS):

Consider the following problem: looking at a map showing a number
of cities, one is interested in the distances between them. These distances
are easily obtained by measuring them using a ruler. Apart from that, a
mathematical solution is available: knowing the coordinates x and y, the
Euclidean distance between two cities i and j is defined by

dij = \/(xi — %)%+ (Vi — ¥))?

Now consider the inverse problem: having only the distances is it
possible to obtain the map? Classical MDS, which was first introduced by
Torgerson (1952), addresses this problem. It assumes the distances to be
Euclidean. Euclidean distances are usually the first choice for an MDS
space. There exist, however, a number of non-Euclidean distance
measures, which are limited to very specific research questions (Borg &
Groenen, 1997). In many applications of MDS the data are not distances
as measured from a map, but rather proximity data. When applying
classical MDS to proximities it is assumed that the proximities behave like
real measured distances. This might hold e. g. for data that are derived from
correlation matrices, but rarely for direct dissimilarity ratings. The
advantage of classical MDS is that it provides an analytical solution,

requiring no iterative procedures.
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Procedure for metric MDS (developed by Torgerson)

The classical scaling process of finding the configuration of points in
the lower dimensional space for a set of dissimilarities &;; will be
described in this section.

Suppose there are n objects with dissimilarities d;; measured between all

pairs of objects.
Constructthe nxn matrix A =a;; :—361-]-2

Constructthe nxn matrix B =b; ;, with elements

ijs

bij=a;;—a;.—aj;+a,

Where
. 1
(i) a; == j=1ij»
.. 1
(ii) aj. = Zi=1%ij»
1
(iii) a =3 =1 Z?:l Aij -

The matrix of squared Euclidean distances of the given coordinates A% (X)
or simplyA? can be expressed by a simple matrix equation with respect to
the coordinate matrix(X), as shown:
AP=c1t+1ct—2XX"
=c1'+1c¢"-2B
Where

(i)  cis the diagonal elements of XX,

(i) 1=(1,1,..,1)T acolumn vector of n ones,

(iii) 1%is transposeof 1,

(iv)  c'is transpose of c,

(v)  X'is transposeof X,

(vij B=XX"

> 98 5




wChanter three>> Multidimensional scaling_

The centering (n X n) matrix H can be defined as
H=l, = 11°
Where
| is the identity matrix, which translates a matrix to a column centered
matrix by multiplying them. By multiplying the left and the right sides by
the centering matrix H, a process called the double centering operation,
we can introduce the following equations:
HA*H = H(c1t + 1ct — 2XXHH
= Hc1*H+ H1c*H — H2BH
= Hc0' + 0c'H — 2HBH
= —2HBH
= —2B
Since the centering of a vector of ones turns out to be a vector of zeros
(1°H = H1 = 0), the first two terms are eliminated. Without a loss of
generality, we can assume that the coordinate matrix(X) is a column
centered matrix. Then, the result of the double centering operation on the
B matrix is equal to B itself, since X is a column centered matrix.

Therefore, we can define the relation between B and D?as follow:

1
B =—-HA’H
2
B=HAH
Where
A=—2A2
2

The configuration of points can be found by expressing B in terms of its
spectral decomposition (Gower and Hand, 1996) as
B=VAVT,

Where
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A= diag(A{, A,,..., A,,), the diagonal matrix of eigenvalues A; of B
A=A

The matrix of corresponding eigenvalues is V=[Vy, V,,..., V;,] where the
eigenvectors are normalized such that ﬁﬁ =1forall i=1,2,...,n.

The configurations of the points in r dimensional display spacecan be
represented by the coordinated matrix X: n X r given by

X=V,A, 2,
Where
The columns of matrix V,.: n X r, consists of the first r eigenvectors of B
that correspond to the r largest eigenvalues of B,
The matrix Arl/2 = diag (111/2, 7\21/2,..., Arl/z).
The coordinate matrix X will be used to display the points which
represent the objects. It must be remembered that the arbitrary sign of the
eigenvectors V; leads to invariance of the configurations with respectto
reflection in the origin. The display space will not necessarily be
Euclidean.
Coxand Cox(2001) points out that if B is positive semi-definite of rank
r, then a configuration in r dimensional Euclidean space can be found, so
that the associated distances between the points &;; are such that

How many dimensions should be used in the display space?
It is easily shown that B has at least one zero eigenvalue, since
B1=HAH 1=0
Where

0 represents a vector of n zeroes.
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A configuration of points in any r = n-1 dimensional Euclidean space can
therefore always be found. The configuration obtained could be rotated to
its principal axes in the principal component sense (Cox and Cox, 2001).
The principle axes are orthogonal to each other. Only the first

r(r <n—1) principal axes are chosen for representing the objects, as
this will explain the maximum variation in r dimensions. It turns out that

X already has the points referred to their principal axes, since
XX" = (V,A, 2)(V,A, 2)"
=A, 2v,"V. A, /2= A,
Where
A is a diagonal matrix.

The distances between the points in the full n — 1 dimensional Euclidean

spaceare given by

2 _ —
5ij =X0CT As(xis — xjs)z ,

And hence relatively small eigenvalues contribute far less to the squared
distance §; jz . If only reigenvalues of B are retained as being
significantly large, then r dimensional Euclidean space spanned by the
first r eigenvectors of B can be used to represent the objects.
Definition 3.1. a goodness of fit measure

The Eigen decomposition is variance-maximizing. That is, each
successive dimension (i.e., eigenvector) “explains” the maximum amount
of variance remaining in the data, after taking any previous dimensions into
account.

The eigenvalues measure the variance explained by each dimension,
and the sum of the eigenvalues is equal to the variance of the entries in B.

The proportion of variance accounted for by the m dimensions in the
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MDS solution is given by the sum of the first r eigenvalues, divided by the

sum of all eigenvalues (there will usually be n nonzero eigenvalues):

Metric MDS Fit = Z5=%s
Lo As
Cox and Cox(2000) suggest a measure when B is not positive semi-

definite:

Metric MDS Fit ===t4s
ot

Choice of r can then be assessed with this measure, but for practical
purpose, r will usually be chosento be 2 or 3.

Basic steps in a classical MDS algorithm are:

1. Construct the nxn matrix A =a; :—%61-]-2
2. Construct the nxn matrix B=HAH
Where
H is nxn the centering matrix
1
H:In - ;l lT

3. Extract the n largest positive eigenvalues of 4, ... 4,, of the matrix B and
the corresponding n eigenvectorse, ...e,,.

4. m-dimensional spatial configuration of the n objects is derived from
the coordinate matrix X:VrArl/ 2Where the columns of matrix V.. with
size nx r ,consists of the first r eigenvectors of B that correspond to the r

largest eigenvalues of B, and the matrix

A T2 =diag(n, 2,0, 72, 0 1),
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Example 3.3.1.1:
In order to illustrate classical MDS, assume that we have measured the
distances between A, B, C, and D on a map. Therefore, the proximity

matrix (showing the distances in millimeters) might look like

A 0 93 82 133
B 93 0 52 60
C 82 52 0 111
D 133 60 111 0

The matrix of squared proximities is

0 8649 6724 17689
Al = [412=|8649 0 2704 3600
[Al= L] 6724 2704 0 12321

17689 3600 12321 0

Since there are n = 4 objects, the matrix H is calculated by

1
H:In - ;l lT
1 0 0 O 1 1 1 1
10 1 0 O 1 1 1 1
H= -0.25%
0O 01 O 1 1 1 1
0O 0 0 1 1 1 1 1
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0:75 —0.25 -0.25 -0.25
- |-0.25 o075 —=0.25 -0.25

—-0.25 -0.25 0:75 —0.25

—-0.25 -0.25 -0.25 0:75

5035.0625 —1553.0625 2589375 —3740.9375

B = —%HAH: —1553.0625 507.8125 5.3125 1039.9375

258.9375 5.3125 2206.8125 —2471.0625
—3740.9375 1039.9375 —2471.0625 5172.062

The eigenvalues of B

. 9724.168

. 3160.986
Az= -0.001
A,- 36.596

For a two-dimensional representation of the four points, the first two

largest eigenvalues and the corresponding eigenvectors of B have to be

extracted
A1-9724:168, 1,-3160:986,
—0:637 —0:586
e — | 0:187 o, = | 0:214
17 1-0:253) 2710:706
0:704 0:334

Finally the coordinates of the points (up to rotations and reflections) are

obtained by multiplying eigenvalues and -vectors

~0.637 —0.586 —62.831 —32.97448
x = | 0187 0214 [[V9724.168 0 _| 18403  12.02697
—0.253  0.706 0 3160986l |—24.960  39.71091
0.704 —0.334 69.388  —18.76340
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MDS map

60

20 B

Dimensional 1 90 -50 50 100

2 { D]

-40

Dimensional 2

Figure 3.1: Classical MDS representation of the four points

3.3.1.2Metric least square scaling:
Metric least square scaling is a metric MDS method that find
configuration X:n X r by matching §;; to d;; by minimizing a certain loss

function (Cox and cox 2001).

where

8;; is the distance between points i and j in this m- multidimensional space
XinXr

d;; is the Euclidian distance between points i and j

. A tow dimensional space (m=2) is usually used.
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Loss function for Metric MDS

Various loss functions have been suggested in the past. Minimizing
different loss function produce different optimal configuration X:n X r.
Borg and Groenen (2005) used a general loss function, which will be
referred to as Raw Stress:

Raw Stress= ¥,;; w;;(8;; — dij)° (3-3)
where:
(i) d;: is the Euclidean distance between points i and j in the
graphical display,
(i)  &;;:is the dissimilarity between objects iand j,
(iif)  w;;: are weights. Which can be specified to emphasize different
pairs. For instance, if there are missing data, we may set
The weights are usually chosen as
w;; = 0if §;; is missing
w;; = 1if§;;is known
Other values of w;; are also allowed and different choices of w;; lead to
different loss functions (Borg and Groenen, 2005).
More generally, let
w;j =d7;;.
Different choices of q can be used to emphasize the representation of small
or large dissimilarities. Large negative values of g may lead to a better
representation of small dissimilarities, but not large dissimilarities.
Conversely, large positive values of q lead to a better representation of
large dissimilarities, but not small dissimilarities. For a relative

presentation of both small and large dissimilarities, choose g=—2. If the
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dissimilarities have some clustering, then choosing a large value of g may
reveal a clearer clustering structure (Borg and Groenen, 2005).

Normalized Stress valus

Normalized Stress should be used to avoid scale dependency,
where

. Y Wi (8ii—di 2
Normalized Stress ==<i%uCu= %) (3-4)
Licjwijdij

Normalized Stress valuesin (3-4) depend on many factors (Borg and
Groenen, 2005) wichis follows :
(i) The higher n, representing the number of points, the higher the
normalized in general.
(i1) The higher r, the dimensionality of display space, the lower the
normalized Stress values.
(iif)  The larger the squared errors (6;; — d;;), the higher the normalized

Stress value

Loss functions, such as normalized Stress in (3-4), are indices that assess
the mismatch between the dissimilarities and corresponding distances.

The residual plot and bubble plot

The residual plot and bubble plot can be used to describe this
mismatch between the dissimilarities and corresponding distances.
The residual plot
The residual plot is a scatter diagram of the distances and the
dissimilarities. A bisector is draw from the lower left corner to the upper
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right corner, and the dissimilarities are drawn on this bisector. The size of
dissimilarities can therefore be noted immediately. The corresponding
distances, that should match the original dissimilarities as well as possible,
are also draw in this residual plot. The vertical distance between the
dissimilarities and the corresponding distance is a measure of the
corresponding error e;; = (6;; — d;;). The error gives an indication of the
size of mismatch between of the dissimilarities and the corresponding
distances. Large error will cause a higher Normalized Stress value in (3-4).
The residual plot gives an indication of which dissimilarities are better
represented in the metric MDS display, but the residual plot does not give
an indication of how well the original objects are represented by points in
the display.

The bubble plot

The bubble plot can be used to assess the fit of each point. The bubble plot
uses the Stress per point measure, which is defined by Borg and Groenen
(2005) as follows:

Stress per point is the average of the squared errors between the current
object and all other objects.

The bubble plot still uses the same configuration of points as the metric
MDS plot to display the objects. The only different is that the bubble plot
uses bubbles to represent the objects, where bubbles with a larger radius
indicate points with better fit. The viewer can therefore immediately see
which objects see better represented in the display.

In practice, a two-dimensional display is mostly used to display the final
configuration X: n X r with r = 2. It is also possible to display the final
configuration X: n X r in a three-dimensional graph, with r=3. A three-
dimensional display will have a lower final Normalized Stress (3-4) and

Row Stress (3-3) value than a two-dimensional display. The normalized
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Stress (3-4) value in a two-dimensional display can be assessed by
considering the upper and lower bounds of The Normalized Stress (3-4)
value. The Normalized Stress value in (3-4) has the following lower and
upper bounds in a two-dimensional display: [0, 0.4352] which were
derived by De Leeuw and Stoop (1984) Stress by assuming that the points
lie equally spaced ona circle. Then, Stress is smaller than
[12cot?(m2n)/(n2 — n)] /2 with the limit [1 — 8/m2]'/?= .4352
(Borg and Groenen 2005).

Local Minima

MDS algorithms usually end up in a local minimum. Various methods can
be used to minimize Normalized Stress (3-4) or Raw Stress (3-3). The aim
of these methods is to find an optimal configuration X:n X r of points,
fromwhich distances d;; can be calculated. The optimal configuration will
be the configuration that produces distances that best match the

dissimilarities §8:; , in the sense that a minimum stress value is reached.

ij
These methods usually operate in an iterative manner by changing the
configuration of points in each step, until either a minimum stress value or
a specified maximum number of iterations is reached. These minimizing
methods will usually require an initial configuration of points. It is
common practice to use the configuration produced by classical scaling as
the initial configuration (Borg and Groenen 2005). Random initial
configurations, where points are randomly produced using a uniform
distribution, can also be used.

The method of dimension reduction repeats the MDS analysis, starting
from a high dimensionality (say, 10) and then reducing the

dimensionality of the solution space stepwise (down to 2, say). The local

minimum configuration of the higher-dimensional analysis is used as a
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start configuration for the MDS analysis in one dimension lower by
dropping the dimension that accounts for the least variance (i.e., the last
principal component). Proceeding in this manner, one hopes that the low-
dimensional solution is a global minimum multiple random starts, or
multistart, consists of running the MDS analysis from many (say, 100)
different random starting configurations and choosing the one with the
lowest Stress. Using multistart and making some mild assumptions, an
estimate for the expected total number of local minima can be given.

Then, the total expected number of local minima n, is

nm(ns - 1)
ng —n,, — 2

ng =

n, is the total expected number of local minima.
n, is the number of multistart start configurations.

n,, Is the number of different local minima obtained.

If ng is approximately equal to n,, then we may assume that all local
minima are found. The one with the lowest Stress is the candidate global

minimum.

The SMACOF algorithm for metric MDS
The SMACOF algorithm used for metric MDS methods operates in an
iterative manner by changing the configuration of points in each step of the

algorithm.

Borg and Groenen (2005) suggest using Normalized Stress (3-2) rather
than Raw Stress (3-1) as loss functions, because using the latter may lead

to degenerate solutions.
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These degenerate solutions are configurations that were obtained by
making the loss function very small, irrespective of the relationship
between distance and the data.

The SMACOF algorithm ensures that the Normalized Stress value in (3-
2) reaches a local minimum, but the local minimum may not be a global

minimum.

The steepest descent methods can also not guarantee that the local
minimum found is indeed the global minimum. Borg & Groenen (2005,
p.276) point out that local in MDS are not necessarily bad.

A final configuration with a slightly worse fit is acceptable if it has a
clearer interpretation than a configuration with a better fit. The problem of
whether the local minimum is indeed the global minimum can be overcome

in several ways.

One possibility is to use multiple starting configurations where the whole
SMACOF algorithm is repeated for each starting configuration and a
minimum Normalised Stress value in (3-4) is noted. The final chosen
configuration will be the overall configuration of all the configurations,
produced from each starting configuration, which leads to the lowest
Normalised Stress value in (3-2) another possibility is to use the tunneling
method (Borg and Groenen 200).

The SMACOF algorithm for metric MDS can be
summarized by:

1. Set Z = X% whereX[®l is some (non)random start configuration.

Setk=0. Set ¢ toasmall positive constant.
2. Compute 5, 1% = 5, (X[0)). Set 5, [ = 5 19,

3. While k=0or (6. — 58> ¢ and k <maximum iterations) do
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4. Increase iteration counter k by one.

5. Compute the Guttman transform X[X). by

X4 = n_lB(Z)Z if all Wij = 1,
X" =v*B(Z)Z otherwise.
Where
I. B(Z)has elements b;; = — W%% :
ij
bij = — ?=1bij ,Vl i]
ii. vt =n"1H.
1
li. H=I, —;lf.
6. Compute &, = 5, (XIk]),
7. Set Z = XIKI,
8. End while
Example 3.2

Tollustrate the SMACOF algorithm, consider the following example

the dissimilarities A and the starting configuration X[%l= Z as following

—0.266 —0.539

~-| 0451 0.252
0.016 —0.238

—0.200 0.524

NEREGE=
N DN O Ul
= O NW
O RN

The elements of the D(Z) are given by d;; = \/(xi - xj)t(xi - x;)

dy, = /(—0.266 — 0.451)% + (—0.539 — 0.252)?=1.068

dy3 = /(—0.266 — 0.016 )2 + (—0.539 — —0.238)2=0.412 °
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dy4 = /(= 0.266 — — 0.200)2 + (—0.539 — 0.524)2=1.065

dy; = /(0.451— 0.016 )2 + (0.252 — —0.238)?=0.655

dys = /(0451 — — 0.200)2 + (0.252 — 0.524)?=0.706

d3, = /(0.016 — — 0.200)2 + (—0.238 — 0.524)2=0.792

0.000 1.068 0.412 1.065

D(2)= 1.068 0.000 0.655 0.706
0.412 0.655 0.000 0.792

1.065 0.706 0.792 0.000

Compute B(2)

The elements of the B(Z) are given by b;; = b;; = — —W;jé_” ,
ij
bjj = —Xj_1bij Vi#]

We assume that all w;; = 1.

b, = —w;,8,,/d,,(z) = —5/1.068 = —4.682
b3 = —wy38,3/d3(z) = —-3/0412 = —7.273
biy = —Wy 4814/ dia(2) = — 4/1.065 = —3.756
by, = —(byy + bys + by,) =—(—4.682 — 7.273 — 3.756) = 15.712.
b,3 = —Wy38,3/d,3(z) =—2/0.655=—3.052
byy = —Wys0,4/dy4(z) = —2/0.706 = —2.835

b22 == _(b21 + b23 + b24) == _(_4.682 - 3.052 - 2.835)
= 10.570

bz = —(bsy + bsy + bsy) = —(=7.273 —3.052 — 1.263) =
11.588
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b44 - _(b41 + b42 + b43) - _(_3.756 - 2.835 - 1.263)
= 7.853

15.712 —4.682 —-7.273 —3.756

B(Z )= —4682 10570 —-3.052 -—2.835
—7.273  —=3.052 11588 —1.263

—-3.756 —2.835 —-1.263 7.853

Compute &,

81" =Ficjwi; (6 —dip)* = 34.2992

(i.)) 8;j d;j (6;; — di))*
(1,2) 5 1.068 | 15.4606

(1,3) 3 0.412 | 6.6977

(1,4) 4 1.065 | 8.6142

(2,3) 2 0.655 | 1.8090

(2,4) 2 0.706 | 1.6744

(3,4) 1 0.792 0.0433

S 34.2992

Compute the first update X"by the Guttman transform

X% = n1B(2)Z

15712 —-4.682 -7.273 —-3.756][—0.266 —0.539

1| —-4.682 10.570 —-3.052 -2.835(| 0.451 0.252
4|—7.273 —3.052 11.588 —1.263|| 0.016 —0.238

—-3.756  —-2.835 -1.263 7.853 11-0.200 0.524
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—1.415 -—-2.471

yu=| 1.633 1.107
0.249 —-0.067

—0.468 1.431

The elements of the D (XY) are given by d;; = \/ (x; — x]-)t(xl- - x;)

d,, = /(=1.415 — 1.633)2 + (—2.471 — 1.107)?=4.700

dy5 = /(~1.415 — 0.249)7 + (—2.471 — —0.067)2=2.923

dis =+/(—1.415 — —0.468)2 + (—2.471 — 1.431)?=4.016

dys3 = /(1.633— —0.249)? + (1.107 — —0.067)2=1.815

dys = /(1.633— —0.468)% + (1.107 — 1.431)2=2.126

ds, =+/0.249 ——0.468)% + (—0.067 — 1.431)?=1.661

0.000 4.700 2.923 4.016

4,700 0.000 1.815 2.126
2923 1.815 0.000 1.661

4.016 2.126 1.661 0.000

D (XY) =

Tofind The elements of the B(X") We assume that all w;; = 1.

The elements of the B(X") are given by b;; = b;; = — W;J"Sij ’
ij

bi'=_ ;-l:lb Vli]

J ij1

b12 - _W12612/d12 (Z) - - 5/4.700 == _1.064

b13 = _W13513/d13 (Z) = _L = — 1.026

2.923

b14 - _W14614/d14(2) - — 4‘/4.016 - - 0.996
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by, = —(byy + bys + by,) = 3.086

by,; = —w,30,3/d,3(z) = —2/1.815=—1.102
by = —Wys8y4/ds(2) = —2/2.126 = —0.941
b,, = —(by; + by5 + b,,) = 3.107

byy = —W3,85,/ds,(2) = —1/1.661=—0.6020
by = —(bsy + bsy + bgy) = 2.539

by = —(byy + byy + by3) = 2.539

3.086  -1.064 - 1.026 - 0.996
B(xt)= | ~1:064 3107 ~1.102 —0.941
- 1026 -1102 2539  =-0.6020
~0.996 —0.941 =-0.6020  2.539

set X = X111 and compute 5, X1

& XM =% jwy;(8;; —dij)? = 0.6758

(i.)) 8;j d;j (6;; — di))*
(1,2 5 4,700 | 0.09

(1,3) 3 2.923 | Ooob6

(1,4) 4 4,016 |0.003

(2,3) 2 1.815 |0.034

(2,4) 2 2.126 | 0.1059

(3,4) 1 1.661 0.4369

> 0.6758

The difference of 5, X!°1  and &, X!
is large, 33.71531530, so it makes sense to continue the iterations.

The second update is
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x[2l =n-1B (X[l] )X[l]

3.086 —-1.064 - 1.026 — 0.9967[—-1.415 -—-2.471

1| —-1.064 3.107 —-1.102 -0.941 1.633 1.107
— 1.026 —1.102 2.539 —0.6020 0.249 -0.067
— 0.996 —0.941 -0.6020 2.539 —0.468 1.431

1.473  —2.540

xizl=| 1.686  1.99
0..154 0678

—0..366 1.274

Continue the iterations until the difference in subsequent Stress values is

less than 107°°.

3.3.2Nonmetric MDS:

Nonmetric multidimensional scaling is also known as ordinal
multidimensional scaling.

The assumption that proximities behave like distances might be too
restrictive, when it comes to employing MDS for exploring the perceptual
space of human subjects. In order to overcome this problem, Shepard
(1962) and Kruskal (1964) developed a method known as nonmetric
multidimensional scaling. In nonmetric MDS, only the ordinal information
in the proximities is used for constructing the spatial configuration.

As mention before, the nonmetric MDS method abandon the metric
nature of the transformation

8= f(dy)),
Where
f(function) can now be arbitrary.
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The only requirement for nonmetric MDS is that the transformation must
preserve the rank order of dissimilarities. The aim with Nonmetric MDS is
to find an optimal configuration X:n X r by matching the disparities
d;;(d;; is the disparity between objects i and j) to d;; by minimizing a
certain loss function. This is similar to the metric least squares scaling
method, the difference being that the dissimilarities §;;in the loss functions

are now replaced by disparities, d; j- The actual dissimilarities value (8;;)

are only used to determine the rank-order of the disparities, &ij , This
means

§ij <6 = dij <dy.
The disparities are also sometimes called pseudo distances. These

disparities which are chosen in an optimal manner will be discussed later.

The loss function of nonmetric MDS
The loss function used by Brog and Groenen (2005) for nonmetric MDS
is very similar to the loss function used for metric MDS. This loss function
will also be referred to as Raw stress, with

Raw Stress= Y, ;w;;(d;; —d;})*>  (3-5)
Where

d;; is the Euclidean distance between points i and |

ij
d; j Is the disparity between objects i and |

w;; the weights must contain non-negative values.
The weights are usually chosenas

w;; =0 ifi=j and

w;j =1 otherwise.
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Other value of w;; are also allowed and different choices of w;; lead to
different loss functions (Brog andGroenen, 2005).

The Raw Stress value in (3-5) is a badness-of-fit measure, but it is
not very informative. A large value does not necessarily indicate a bad fit,
as it depends on the scale of distances in the configuration Xn X r.

Normalized Stress can be used remove the scale dependency where

. o iwii(dii —dii)?
Normalized Stress = 2<% 2”) : (3-6)
Licjwijdij

The aim of the nonmetric MDS method:

The aim of the nonmetric MDS method is to find an optimal configuration
X: n X r of points, from which distances d;; and disparities c?l-j can be
calculated, that will minimize the Normalized Stress (3-6) or Raw Stress
(3-5) loss functions. However, the minimizing of the Normalized Stress (3-
6) function is not an easy task. The minimizing is usually done by an
iterative process. The difference between the iterative process of the metric
least squares scaling method and this iterative process is that the disparities
d; j also need to be optimally chosen, which depends on the distances d;; .

The distances d;; , in turn, depend on the configuration X: n X r, which

i
changes during each iteration. Therefore, the disparities d; jand the
distances d;; need to be optimally chosenduring each step ofthe iteration.
The SMACOF algorithm can again be minimize the Normalized Stress (3-
6) or Raw Stress (3-5) loss functions.

Scaling by a MAjorizing of a COmplicated Function (SMACOF)
The SMACOF algorithm used for the nonmetric MDS method is described
in detail by Brog and Groenen (2005).

1. Set Z = X% whereX!°! is some (non)random start configuration.
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Setk=0. Set + toasmall positive constant.

2. Find optimal disparities d;; for fixed distancesd,; (X!°').

3. Compute 6,1° = 6. (d,X!)). Set 5,171 = 5 1%,
4. While k=0or (6, — 5 N> ¢ and k <maximum iterations) do
5. Increase iteration counter k by one.

6. Compute the Guttman transform X X)), by

XU = n—lB(Z)Z if all Wi = 1,
X! = v*B(Z)Z otherwise.
Where
i.  B(Z)has elements b;; = — —WZ.(S.U ,
ij
bjj =—Xi_1bij Vi#].
ii. vt=nlH
1
iii.  H=I, —;llT

7. Find optimal disparities d;; for fixed distances d;; (X¥).

8. Compute 5, =&, (d, X¥).

9. Set Z = XIX],

10. End while

Brog and Groenen (2005) suggest using Normalized Stress (3-7) rather
than Raw Stress (3-6) as loss function, because using the latter may lead to
degenerate solutions.

Heiser (1991) also points out that negative disparities could lead to
degenerate solutions.

The SMSCOF algorithm ensures that the Normalized Stress value in (3-7)
reaches a local minimum, but the local minimum may not be a global

minimum. The problem of whether the local minimum is indeed the global

>»> 80 5




wChanter three>> Multidimensional scaling_

minimum can be overcome using multiple initial configurations or by using

the tunneling method.

Monotone regression with Kruskal’s up-and-down-blocks

algorithm:

Kruskal's least-squares monotonic transformation (or monotone
regression ) is used MDS techniques for fitting object space distances to
the raw proximity data. We use the following example to illustrate this
way.

Example 3.

Table 3.1 presents a proximity matrix for 5 objects and Table 3.2 presents
the distances between the objects in the object space derived at this point

in the MDS program.

A [B [C |[D |E A |B |C |D |E
Alo |1 |8 [3 |4 A 0 1.0 |64 (15 |3.0
B |1 |0 |7 |2 |10 B [1.0 |0 6.2 |25 |8.4
Clg |7 |0 |5 |9 C |64 (6.2 |0 4.2 8.2
D |3 |2 |5 |0 |6 D |15 |25 (42 |0 8.4
E |4 |10(9 |6 |0 E |30 (84 (82 (84 |0

Table 3.1 Proximity Matrix Table 3.2. Distance

It is the goal of the monotone regression procedure to find a least-square

monotonic fit of the distances to the proximities. In this way, a
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comparison may be made to see if the current spaceis a proper solution to
the MDS analysis.

Since the data and distance matrices are symmetric, we only need handle
the lower-half matrix of each in the procedure; the upper-half of the
resulting disparity matrix is merely a symmetric reflection of the lower-
half.

The first step is to arrange the proximity cells into ascending order of
proximity. The outcome of this step is shown in the first two columns of
Table 3.3. The distances for these cells are shown in the third column of
Table3.3. If the distances perfectly fit the given proximities in the
proximity matrix, the distances in column three should also be in
ascending order. Since they are not in such order, they are transformed
into disparities to measure the departure from the perfect fit.

The transformation consists of a series of comparisons of distances in the
order given in Table 3.3. Each time a distance is found out of place (i.e.
the series descends instead of ascends), the distances of concern are
equalized to satisfy minimally the monotonic requirement.

In the example, the series of comparisons proceeds from top to bottom.

1. Thefirst distance 1.0 does not exceed the second distance 2.5; so,
these distances fit the monotonic relation established by the
proximity matrix.

2. The second distance 2.5 exceeds the third distance 1.5. To correct
this relation, each of these two distances is replaced with their
mean 2.0. Thus, the second distance and third distance have been
replaced by disparities 2.0.

3. The forth distance 3.0 does not exceed the fifth distance 4.2; so,
these distances fit the monotonic relation established by the

proximity matrix.
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4.,

The fifth distance 4.2 does not exceed the sixth distance 8.4; so,
these distances fit the monotonic relation established by the
proximity matrix.

The sixth distance 8.4 is compared to the seventh distance 6.2. The
sixth and seventh disparities become 7.3, the mean of 8.4 and 6.2.
Now, however, the seventh disparity 7.3 exceeds the eighth
distance 6.4. In this case, the sixth, seventh, and eighth disparities
become 7.0, which is the mean of the sixth, seventh, and eighth
distances (8.4 + 6.2 + 6.4)73. This disparity exceeds the fifth
distance 4.2 and does not exceed the ninth distance 8.2.

. The ninth distance 8.2 does not exceed the tenth distance 8.4; so,

these distances fit the monotonic relation established by the

proximity matrix.

The calculation of the disparities has been completed with the result

shown in the last column of Table3.3.

OBJECT PROXIMITY DISTANCE DISPARITY
PAIR

AB 1 1.0 1.0
BD 2 2.5 2.0
AD 3 1.5 2.0
AE 4 3.0 3.0
CD S) 4.2 4.2
DE 6 8.4 7.0
BC I 6.2 7.0
AC 8 6.4 7.0
CE 9 8.2 8.2
BE 10 8.4 8.4

Table 3.3. Example of Disparity Calculation
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Example 3.3
To illustrate the SMACOF algorithm, consider the following example the

dissimilarities A and the starting configuration X[%= Z as following

W N

3
|2
Z=11
10 4

>

I
LTNW O
B RO w
NOR DN
o o U

The elements of the D(X!°)) are given by d;; = \/ (x; — xj)t(xl- — X))

di, =(3-2)2+(2-7)%=51

di;=J(3—1)2+ (2—3)2=22

dis=+(3—10)2+(2—-4)?=73

dys =(2—-1)2+(7-3)2=41

dyy = /(2= 10)2 + (7 —4)?=85

dy, = /(I—10)2 + (3—4)2=9.1

0 51 22 73

. 41 8.5
D (x1°)) = 2?21 4(.)1 0 9.1

73 85 91 0
Compute disparities d;; for D (X!°))
= Thefirst distance 4.1 exceeds the second distance 2.2. To correct
this relation, each of these two distances is replaced with their

mean. Thus, the first distance and second distance have been

replaced by disparities 3.17.
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= Thethird distance 5.1 does not exceed the forth distance 8.5; so,
these distances fit the monotonic relation established by the
proximity matrix.

= The forth distance 8.5 exceeds the fifth distance 7.3. To correct
this relation, each of these two distances is replaced with their
mean. Thus, the forth distance and fifth distance have been

replaced by disparities 7.9

2,3 1 4.1 3.17
1,3 2 2.2 3.17
1,2 3 5.1 5.1
2,4 4 8.5 7.9
1,4 5 7.3 7.9
3,4 6 9.1 9.1

Compute B(X!°))

The elements of the B(Z) are given b;; = — W;f—"‘?”’ ,

ij
bij:_ ;-l=1bij ,Vli]

We assume that all w;; = 1.

bi; = —Wy,d;,/dy,(2) = =5.1/5.1 = —1

bys = —Wy3dqs/dy3(2) = =3.17/2.2 = — 1.44

b14 == _W14a14/d14(2) = - 7.9/7.3 == _1.08
b11 == _(b12 + b13 + b14) - (_1 - 1.44 - 1.08) == 3.52
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bys = —Wy3dys/dys(2) =—3.17/4.1=—0.773

by, = —Wy,do,/dy,(z) = 7.9/8.5 = —0.929

by, = —(byy + bys + by,) = —(—0.929— 0.773 — 1) = 2.702
bsy = —W3,dz,/ds,(2) = —9.1/9.1=—1

bsz = —(bsy + b3y + by,) = —(—144—0.773 — 1) = 3.213
byy = —(byy + byy + byz) = —(=1.08—0.929 — 1) = 2.009

[ 352 —1 — 144 —1.08
Bxion=| -1 2.702 —0.773 —0.929|
B =1 14a “Z0773 3213 -1 |
| —108 —0929 =17 2.009!
Compute §&,.1°!
s.lo1 Zicjwij(dij—d;ij)? _ 25 _ 1
r Zi<jwijdij2 256.0
(i.J) d;j d;j d;;’° (dij — dij)?
2.3 4.1 3.17 16.8 0.9
1,3 2.2 3.17 4.8 0.9
1,2 5.1 5.1 26.0 0
2.4 8.5 7.9 72.3 0.4
1,4 7.3 7.9 53.3 0.4
3,4 9.1 9.1 82.8 0
> 256.0 2.6

Compute the first update X!'by the Guttman transform

x[1l = n-1B (X[O])X[O]
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[ 352 -1 — 144 -1.087[3 2
1 -1 2.702 —0.773 —0.929|[{2 7
al— 144 —0.773 3.213 —1 1 3
| —1708 —0929 =1 2009110 4
—3.460 —3.910
yi11 _ | 0.408 —0.851
~3.163 —7.143
3.498 —5.767

The elements of the D (X!*)) are given by d;; = \/(xz - xj)t(xl- )

di, =/ (—3.460 — 0.408)2 + (—3.910 — —0.851)2
=4.931

d;5 = \[(—3.460 — —3.163)Z + (—3.910 + 7.143)? = 3.073

dy, = /(—3.460 — 3.498)Z + (—3.910 + 5.767)% = 11.919

dy3 = /(0.408— —3.163)% + (—0.851 + 7.143)? =7.234

dy4 = /(0408 — 3.498)% + (—0.851 + 5.767) = 5.806

dg, = /(—3.163 — 3.498)2 + (—7.143 + 5.767)% = 6.802

0.000 4.931 3.073 11919

iy — | 4931 o000 7.234 5.806
D (x™) 3.073 7.234 0.000 6.802

11919 5.806 6.802  0.000

Compute disparities d;; for D (X!

= Thefirst distance 7.234 exceeds the second distance 3.073. To
correct this relation, each of these two distances is replaced with
their mean5.154. But, the first distance and second distance exceed
the third distance 4.931. To correct this relation, each of these
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distances is replaced with their mean Thus, the first distance,
second and the third distance have been replaced by disparities
5.079.

= The forth distance 5.806 does not exceed the fifth distance 11.919;
s0, these distances fit the monotonic relation established by the
proximity matrix.

= The fifth distance 11.919 exceeds the sixth distance 6.802. To
correct this relation, each of these two distances is replaced with
their mean. Thus, the fifth distance and sixth distance have been
replaced by disparities 9.3605.

(M) 5 d, a3
2,3 1 7.234 5.079
1,3 2 3.073 5.079
1,2 3 4,931 5.079
2,4 4 5.806 5.806
14 5 11.919 9.3605
3,4 6 6.802 9.3605

Compute B(X11)

Wijdij
dij

The elements of the B(X!*!) are given by b;; =
We assume that all w;; = 1.
by, = —Wypdy,/dy,(XY) = =5.1/5.1 = —1
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bis = —Wy3dqs/ds(XY) = —3.17/2.2 = — 1.44

by = _W14a14/d14(xu) =-7.9/73
—1.08

bll = _(blz + b13 + b14) = (_1 - 1.44 - 1.08) = 352
b23 = _W23 a23/d23(xu) == _3.17/4.1:_0773

bya = —W,4dy/d2s (2X") = 7.9/85
=-0.929

b22 == _(b21 + b23 + b24) == _(_0929 - 0773 - 1)
= 2.702

b34 == _W34a34/d34 Xu) - _9.1/9.1=_1

3.213
b44 = _(b41 + b42 + b43) == _(_1.08 - 0.929 - 1)
= 2.009
3.52 -1 — 144 -1.08
[1] -1 2.702 —0.773 —0.929
B(X ) — 144 -0.773 3.213 -1
—-1.08 —-0.929 -1 2.009
Compute &, X!
6r[0] _ Zi<jwij(dij_‘i;'j)2 _ 13.808 — 0045
Licjwijdij 308.129
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(i’j) dij aij dij ’ (dij - aij)z
2,3 7.234 5.079 52.331 | 4.644
1,3 3.073 5.079 9.443 |4.024
1,2 4931 5.079 24,315 |0.022
2,4 5.806 5.806 33.710 |0
1,4 11.919 9.3605 142.063 | 2.559
3,4 6.802 9.3605 46.267 | 2.559
2 308.129 | 13.808
The second update is
x[2] = n—lB(X[l])X[l]
x[2]=
3.52 -1 — 144 -1.08 717—3.460 -3.910
1 -1 2.702 —-0.773 —-0.929|] 0.408 —0.851
4|— 144 -0.773 3.213 —3.163 —7.143
—-1.08 —0.929 -1 2.009 3.498 —5.767
—8.127 —2.471
xl21 — | 7.007 7.132
| —-5.496 —16.662
4916 5.459

Continue the iterations until the difference in subsequent Stress values is

less than 107°°.
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3.3.2.1 Judging the goodness of fit

The amount of stress may also be used for judging the goodness of fit
of an MDS solution: a small stress value indicates a good fitting solution,
whereas a high value indicates a bad fit. Kruskal (1964a) provided some
guidelines for the interpretation of the stress value with respect to the
goodness of fit of the solution (Table 3.4).

Caution: These simple guidelines are easily misused. In order to avoid
misinterpretation, the following should be kept in mind:

e There are many different stress formulae in the MDS literature. The
guidelines, however, apply only to the stress measure computed by
equation (3-4).

e Stress decreases as the number of dimensions increases. Thus, a two-
dimensional solution always has more stress than a three-

dimensional one.

Stress | Goodness of fit

> .20 poor
0.10 fair
0.05 good
0.025 excellent
0.00 perfect

Table 3.4: Stress and goodness of fit.
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The Shepard diagram and scree plot can be used to describe the badness-
of-fit.

The Shepard diagram

The Shepard diagram plots the disparities d; j and distances d;; on the
same graph, which gives an indication of how well the disparities are fitted

to the distances. The (d; , d; ;) pairs are plotted and these pairs all lie on

jo

a monotonically increasing regression line. The (d;;, d; j ) pairs are also

j )
plotted. The vertical distance between these points gives a measure of the

corresponding error ¢;; = (d;; — ciij ). The error gives an indication of

ij
the size of mismatch between the distances and the corresponding
disparities. Larger errors will cause a higher Normalized Stress (3-7) and

Raw stress (3-6) value.

Scree plot
In a scree plot, the amount of stress is plotted against the number of

dimensions. Since stress decreases monotonically with increasing
dimensionality, one is looking for the lowest number of dimensions with
acceptable stress. An "elbow" in the scree plot indicates, that more
dimensions would yield only a minor improvement in terms of stress. Thus,
the best fitting MDS model has as many dimensions as the number of
dimensions at the elbow in the scree plot. (Borg and Groenen, 2005).
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Scree plot Shepard dsagram
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Left panel: Scree plot displaying an elbow at three dimensions.
Right panel: Shepard diagram with the optimally scaled proximities.
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IV.CLUSTER ANALYSIS

4.1 Introduction

Cluster analysis is an area of statistics that involves sorting observed
data into natural groupings based onsimilarity. Grouping data is important
because it can reveal a lot of information about the data such as outliers,
dimensionality, or interesting relationships that may have previously gone
unnoticed. Many think of clustering methods much like classification;
however, there are important differences. In classification, there is some
pre-specified number of groups or categories into which variables or data
are placed. There are also specific rules for placing items into each
category, depending on the method of grouping the data. Unlike
classification, in cluster analysis there is no prior specification about the
number of groups or types of groups to which different variables or data
points will be assigned. The grouping is done based solely on similarity
measures and the number of groups that seems to suit the data best is often
determined within the clustering algorithm. These characteristics can make
cluster analysis difficult. The groupings really depend on the definition of
similarity.
4.2 Cluster Analysis

The word clustering is defined as: "a grouping of a number of
similar things" [University (2006)].Here, the word similar refers to the
objects present in the same group, which possess like characteristics. In
data mining, the goal of cluster analysis methods is to cluster unlabeled
data, with no or little prior information about the class labels, into groups,
such that objects in the same subgroup are very similar to one another and
objects in two different subgroups are very different [Witten and Frank
( 2005)] Han& Kamber (2006)] [Dunham ( 2002]. Let D be a dataset

with n objects. When a cluster analysis algorithm is applied to this dataset
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D, it groups the data in C;,C,, ... C;, clusters given that the total number of
clusters is k.

The main objective of a cluster analysis method is to minimize the
distance between the objects located in the same cluster and to maximize
the distance between the objects located in different clusters. Figure 4.1 (a)
depicts a sample dataset in a 2-dimensional spaceand Figure 4.1 (b) shows
the clusters marked with circles when k = 3. The results after applying a
cluster analysis algorithm show that the clusters are generated in such a
way so that the objects in each cluster are very close to one another.
However, in the real world, the datasets are not as simple as the one
depicted above. The objects are not always so clearly separated and the
clusters are not usually as well-defined. Moreover, the datasets may
contain hundreds or even thousands of objects and the feature space of
these objects may also be very high dimensional. As a result, the task of

clustering is often more complex and challenging.

@ (b)
AA A A
A4 A @

ah
A
AA
Figure 4.1: Clustering example: (a) input data and (b) the

clusters.

In the following subsection we discuss the fundamental steps of a typical

cluster analysis task.
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4.2.1 Cluster Analysis Procedure

Cluster analysis methods usually follow a number of sequential steps
[Jain & etal (1999)], [Xu & Wunsch (2005)]. Figure 4.2 illustrates the
basic steps of a cluster analysis procedureas discussed in [Xu & Wunsch
(2005)]. According them, the four main steps that most clustering
algorithms follow are:

a) Feature selection or feature extraction.

b) Design or selection of cluster analysis algorithm.

c) Cluster validation.

d) Interpretation of results.

We briefly discuss each of the four components below.

Feature — Clustering ) {dF,
Selection or Algorithm Design t, tot/
Extraction or Selection 2t

Clusters
Data Samples

ﬁ‘ Results — Clusters
Interpretation % Validation

Knowledge

Figure 4.2: Sequential procedure of a cluster analysis process [ Xu and Wunch (2005)].

a-Feature Selection or Extraction: In practical applications, datasets
often contain a large number of features to represent the objects. However,
not all the features are useful for the learning process. Most of the time,
there are several features.

The experimental studies of Witten et al., (2005) show that, adding such
features to the cluster analysis process usually deteriorates the performance
of the algorithms. As such, techniques such as Feature Selection and

Feature Extraction often prove to be useful to carefully reduce the size of
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the original feature set. According to Jain et al. [Jain etal (1999)] Feature
Selection is the process of identifying the most effective subset of features
from the original feature set. In contrast, Feature Extraction is the process
of producing a new set of features by performing transformations on the
original feature set [Xu and Wunsch (2005)], [Jainet al (1999)]. Both
of the processes reduce the feature size by removing the redundant or
irrelevant features and in doing so, simplify the clustering process.
b-Design or Selection of Cluster Analysis Algorithm:

This step involves the selection of a proximity measure and a cluster
analysis algorithm. The selection of a proximity measure directly affects
the formation of the clusters. One of the commonly used distance measures
is the Euclidean distance measure. There are, however, a number of other
proximity measures available in the literature which we discussed in detail
in Chapter 2. In addition to the selection ofa proximity measure, the results
from cluster analysis also vary depending on the clustering algorithm that
has been selected [Jain et al (1999)]. Several algorithms partition the data
into a predefined number of groups (i.e. K-means), whereas other
algorithms output a nested series of clusters [Jain et al (1999)]. Some of
the algorithms are suitable for large datasets, whereas other methods
handle outliers better. We discuss various cluster analysis methods in
Section 4.3.

c-Cluster Validation:

Given a dataset, a cluster analysis algorithm will always produce
proximity functions may produce different results. Therefore, it Iis
necessary to assess the results to compare, evaluate, and measure the
goodness of the cluster analysis methods. There are several evaluation and
validation measures proposed in the literature that help to perform suchan

assessment. According to Jain et al. [Jain et al (1999)] and. [Xu et
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al(2005)], these cluster validation measures are categorized into three
groups:

1) External measures.

2) Internal measures.

3) Relative measures.
The external measures consider the prior knowledge about the data (i.e.
class labels) against the cluster analysis results for the assessments.
In contrast, the internal measures compute the assessment without any
reference to the external information; they only consider the information
present in the original dataset.
The relative measures perform the evaluation by comparing the results

from various cluster analysis methods with one another.

d-Interpretation of Results:

The ultimate goal of any cluster analysis task is to partition the data
into meaningful groups. As such, in this step, domain experts often analyze
the clusters to discover the hidden patterns among the objects in a cluster
and to assign a label to the clusters based on the underlying patterns.

4.2.2 Limitations:

A number of application domains to which the cluster analysis
algorithms are often applied. The areas include data mining, machine
learning, pattern recognition, bioinformatics, image processing, and many
others. Nevertheless, when the cluster analysis techniques are applied to
real-world datasets, several problems arise. In this section, we briefly state
the drawbacks of cluster analysis as addressed by Dunham in [Dunham (
2002)].

* One of the main difficulties that arise with respect to a cluster

analysis task is to correctly and automatically determine the number of

>»> 99 4




pChapterfour »>>> Cluster analysis

clusters k. In cluster analysis, most of the time the prior knowledge or
additional information about the data is not available to the users. As such,
the algorithms that require the number of clusters A; as input need special
consideration. Intuitively, providing an incorrect value for k may result in
unsatisfactory results. For instance, selecting a smaller value for k may
over-generalize the results as it will try to combine natural clusters to
achieve the user-specified number of clusters. In contrast, if k is set to a
very high value it may decompose the natural clusters into many smaller
subsets to achieve the desired number of clusters. Both the cases will have
significant impact on the results.

* Interpreting the clustering results or more specifically, interpreting
the clusters, is also considered to be one of the major problems in cluster
analysis. As class labels are not available during the process, it may not
always be possible to correctly interpret the semantic meaning of each of
the individual clusters without any domain-specific knowledge.

* Handling outliers is another fundamental problem in cluster
analysis. In a dataset, outliers are objects that are very different from the
other objects in the dataset, and as such, they usually form their own
clusters. Placing an outlier in a cluster that contains objects that are very
different from it (i.e. to achieve the desired number of clusters), may result
in the formation of poor clusters [Dunham ( 2002)].

* Because dynamic data change over time, cluster membership may
also change over time and therefore requires careful consideration to
accommodate the changes.

 Another problem that may be encountered during the cluster
analysis process, is that there may be no exact or correctanswer to the
clustering solution. Given a dataset, different algorithms may return
different sets of clusters. Moreover, different users may also have

different views and therefore may interpret the clusters differently. These
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difficulties may make the decision making task more complex and
ambiguous.

* Finally, with the increasing amount of data, problems
surrounding high dimensionality and handling of large datasets have also
become a point of concern. However, these problems also open the door
to new research ideas. Various algorithms have been proposedto solve
one or more of these problems efficiently. In the next section, we provide
an overview of the cluster analysis methods and briefly address their

advantages and disadvantages.

4.3 Overview of Cluster Analysis Methods

There have been many cluster analysis algorithms proposed in the
literature. A number of these algorithms are particularly suitable for a
certain type of data (e.g. numeric or nominal). Several algorithms are also
suitable for a particular purpose or the application domain [Han and
Kamber (2006)], [Kaufman and Rousseeuw (2005)]. We briefly present
several cluster analysis methods as discussed in [Dunham ( 2002)] and
[Han and Kamber (2006)]. We place particular emphasis on the first two
methods, partitional and hierarchical, as they are strongly related to this
study.

4.3.1 Partitional Methods:

A partitioning method creates k partitions, called clusters, from
given set of n data objects. Initially, each data objects are assigned to some
of the partitions. An iterative relocation technique is used to improve the
partitioning by moving objects from one group to another. Here, each
partition is represented by either a centroid or a medoid.
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A centroid is an average of all data objects in a partition, while the
medoid is the most representative point of a cluster [Velmurugan,T. and
Santhanam,T.,(2011)]. The fundamental requirements of the partitioning
based methods are each cluster must contain at least one data object, and
each data objects must belong to exactly one cluster. In this category of
clustering, various methods have been developed.
4.3.1.1 K-means Algorithm:

K-means s an iterative algorithm where a cluster is represented by
the centroids (the mean value of the objects in a cluster).McQueen (1967)
proposed the K-means cluster method [kandil (2011)].

Given a dataset and the number of clusters k, the algorithm works as
follows [kandil (2011)] the first step of this algorithm is to initialize the
centroids. There are a number of different ways to assign the initial values
to the centroids. We may either randomly select any k objects from the
data, or select the first k objects and assign them as the centroids of the
clusters. Once the algorithm is initialized with the centroids, the next step
Is to calculate the distance from each centroid to all the objects in the
dataset. A distance measure, such as the Euclidean distance, is often used
to calculate this distance. Next, the objects are assigned to the respective
clusters based on the minimum distance from the centroids. Therefore, an
object will be assigned to a cluster if the distance between its centroid and
the object is minimum (compared to the distances between the centroids of
other clusters and this object). Once all the objects are assigned to their
respective clusters, we recalculate the centroids with the new cluster
assignments. The centroid, as mentioned above, is the mean value of all
the objects in a cluster. We then iterate the process anumber of times until
the stopping  criterion is satisfied. This is usually satisfied when the
objects are no longer reallocated to different clusters or when the maximum

number of iterations is reached.

»> 102 4




pChapterfour »>>> Cluster analysis

The K- means Algorithm:

Input:

Input : ‘k’, the number of clusters to be partitioned; ‘n’, the number of
objects.

Output:

A set of ‘k’ clusters based on given similarity function

Algorithm:

1. Arbitrarily choose ‘k’ objects as the initial cluster centers;

2. Repeat,

a. (Re)assign each object to the cluster to which the object is the most
similar; based on the given similarity function;

b.Update the centroid (cluster means), i.e., calculate the mean value of
the objects for each cluster;

3. until no change.

Example4.3.1.1 . In this example, the dataset contains 9 items:

D = {2, 4, 10, 12, 3, 20, 30, 11, 25}. Let k = 2, the desired number of
clusters. We use the Euclidean distance as the distance measure. The first
step of the algorithm consists in assigning any two items as the cluster
centroids. These items are either selected randomly or the first k items are
selected. We used the later approach for this example. Below we show the
calculations for each phase.

Iteration 1: centroid1 = 2 and centroid 2 = 4

The distance between centroid | and each item in
D{0,2,8,10,1,18,28,9,23}

The distance between centroid 2 and each item in
D{2,0,6,8,1,16,26,7,21}

According to the minimum distance between the centroids and each of

the items, the clusters are:
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Clusterl = {2, 3} Since the item 3 is equally close to centroid | and
centroid 2, we arbitrarily selected cluster 1.
Cluster2 = {4, 10, 12, 20, 30, 11, 25}

Iteration 2: centroid | = ?: 2.5 and

4+10+12+20+30+11+25 _
7

The distance between centroid | and each item in D:
{0.5, 1.5,7.5,9.5, 05, 17.5, 27.5, 8.5, 22.5}

The distance between centroid2 and each item in D:
{14, 12, 6, 4,13, 4, 14, 5, 9}

According to the minimum distance between the centroids and each of

centroid2 = 16

the items, the clusters are:
Cluster 1 ={2, 3, 4} Since the item 4 is equally close to centroid |
and Cluster 2 = {10, 12, 20, 30, 11, 25}

2+3+4

=3and

Iteration 3: centroid | =

10+12+20+30+11+25_|

centroid 2 = 8

The distance between centroid | and each item in D:
{1,1,7,90,17, 27, 8, 22}

The distance between centroid2 and each item in D:

{16, 14, 8, 6, 15, 2, 12, 7, 7}

According to the minimum distance between the centroids and each of
the items, the clusters are:

Cluster 1 ={2, 3, 4, 10} Since the item 10 is equally close to centroid |
and Cluster2 = {12, 20, 30,11,25}

Iteration 4: centroid | = w: 4.75

124+20+30+11+25

and centroid 2 = - =19.6

The distance between centroid | and each item in D:

> 104 4




pChapterfour »>>> Cluster analysis

{2.75, 0.75, 5.25, 7.25, 1.75, 15.25, 25.25, 6.75, 20.25} The distance
between centroid2 and each item in D:

{17.6, 15.6, 9.6, 7.6, 16.6, 0.4, 11.4, 8.6, 5.4}

Cluster 1 ={2, 3,4, 10, 11} Since the item 11 is equally close to centroid
I

and Cluster2 = {12, 20, 30,25}

2+3+4+10+11 _

Iteration 5: centroid | = 5

and centroid 2 = w = 21.75

The distance between centroid | and each item in D:

{4, 24, 6, 3, 14, 24, 5, 19}

The distance between centroid2 and each item in D:
{19.75,17.75,11.75,9.75, 1.75, 8.25, 10.75, 3.25}

The clusters are:

Cluster 1 ={2, 3, 4,10, 11, 12} Since the item 12 is equally close to
centroid |

and Cluster 2 = {20, 30, 25}

2+3+4+10+11+12 _
6

= 25

Iteration 6: centroid | = 7

. 20+30+25
and centroid 2 = 22332F2>

The distance between centroid | and each item in D:

{5, 3,35, 4,13, 23, 6, 18}

The distance between centroid2 and each item in D:

{23, 21, 15, 13, 22, 5, 5, 14 , 0}

The clusters are:

Cluster | ={2, 3, 4, 10, 11, 12} and Cluster 2 = {20, 30, 25}

We stop at this step because none of the items were relocated in iteration

6 (iteration 5 and 6 are identical)
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The result for this example, which is returned at the end of the process is:
Cluster | = {2, 3, 4, 10, 11, 12} and Cluster2= {20, 30, 25}.

Advantages of the K-means Algorithm:

1.According to Han et al. [Han and Kamber (2006)], the K-means
algorithm works well for compact clusters in which the clusters are well
separated from one another.

2.Moreover, the algorithm also works well for large datasets, since the
computational complexity of the algorithm is O(n), where n is the number
of objects present in the dataset [Jain etal (1999)], [Han and Kamber
(2006)].

Limitations of the K-means Algorithm

1- One of the disadvantages of the K-means algorithm is that it only
considers numeric attribute types and is therefore not applicable to
datasets with nominal or categorical attributes.

2-The performance of the K-means algorithm depends in part on the
initial values selected as the cluster centroids in the initialization stage
that may later affect the quality of the clusters.

3-Dunham [Han and Kamber (2006)] also states that, the K-means
algorithm is very sensitive to outliers.

4-Not suitable to discover clusters with non-convex shape, or clusters
of very different size. [Aiello etal (2007)].

4.3.1.2 K-medoids method:

The most well-known K-medoids algorithms are PAM (Partitioning
Around Medoids) [Kaufman and Rousseeuw (2005)]. The k-means
method uses centroid to represent the cluster and it is sensitive to outliers.
This means, a data object with an extremely large value may disrupt the
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distribution of data. K-medoids method overcomes this problem by using
medoids to represent the cluster rather than centroid. A medoid is the most
centrally located data object in a cluster [ Berkhin ( 2002)].

Here k data objects are selected randomly as medoids to represent k cluster
and remaining all dataobjects are placed in a cluster having medoid nearest
(or most similar) to that data object. After processing all data objects, new
medoid is determined which can represent cluster in a better way and the
entire process is repeated. Again all data objects are bound to the clusters
based on the new medoids. In each iteration, medoids change their location
step by step. Or in other words, medoids move in each iteration. This
process is continued until no any medoid move. As a result, k clusters are
found representing a set of n data objects. An algorithm for this method is
given below.[ Han& Kamber (2006)].

The K- medoids Algorithm

Input:

Input : ‘k’, the number of clusters to be partitioned; ‘n’, the number of
objects.

Output:

A set of ‘k’ clusters that minimizes the sum of the dissimilarities of all the
objects to their nearest medoid.

Algorithm:

1. Arbitrarily choose ‘k’ objects as the mitial medoids;

2. Repeat,

a. Assign each remaining object to the cluster with the nearest medoid;
b.Randomly select a non-medoid object;

c. Compute the total costof swapping old medoid object.

d. If the total costof swapping is less than zero, then perform that swap
operation to form the new set of k- medoids.

3. Until no change.
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The strengths and weaknesses of this algorithm are mentioned as
below.
Strengths:

More robust than k-means in the presence of noise and outliers; because a
medoid is less influenced by outliers or other extreme values than a mean.
Weaknesses:

1. Relatively more costly
2. Relatively not so much efficient.

3. Need to specify k, the total number of clusters in advance.
4. Result and total run time depends upon initial partition

4.3.2 Hierarchical Methods

In this section, we discuss another type of cluster analysis method known
as the Hierarchical Clustering methods. A hierarchical method builds a
hierarchy or a tree of clusters.

The tree is also commonly referred to as a dendrogram [Dunham ( 2002)].
The root of a tree often contains all the data objects in one cluster, whereas
the leaves of the tree usually contain each object in a single cluster. There
are two variations of this method discussed in the literature: agglomerative
or bottom-up approach and divisive or top-down approach [Han and
Kamber (2006)], [Jain et al (1999)], [ kandil (2011)].

4.3.2.1Theagglomerative (bottom-up)

In this approach, the algorithm starts from the bottom of the tree where
each object has its own unique cluster. It gradually groups these clusters
by recursively merging two or more similar clusters together. This process
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is continued until all the clusters are merged into a single cluster (the root)
or a given termination criterion is satisfied.

4.3.2.1.1Thesteps for the agglomerative hierarchical clustering
algorithm

Given a proximity matrix D, .,,= [d,s], the steps for the agglomerative
hierarchical clustering algorithm are as follows.

1. Begin with n clusters, each containing only a single object.

2. Search the dissimilarity matrix D for the most similar pair. Let the pair
chosen be associated with element d,..so that object r and s are selected.
3. Combine objects r and s into a new cluster (rs) employing some criterion
and reduce the number of clusters by deleting the row and column for
objects r and s. Calculate the dissimilarities between the cluster (rs) and all
remaining clusters, using the criterion, and add the row and column to the
new dissimilarity matrix.

4. Repeat steps 2 and 3, (n — 1) times until all objects form a single cluster.
At each step, identify the merged clusters and the value of the dissimilarity
at which the clusters are merged.

By changing the criterion in Step 3 above, we obtain several agglomerative

hierarchical clustering methods.

Agglomerative hierarchical clustering methods:

4.3.2.1.1.Single Link (Nearest-Neighbor) Method

This method also has been referred to as the elementary linkage, minimum
method, and nearest neighbor cluster analysis (Johnson, 1967; Lance and
Williams, 1967).

Seeath (1957) and McQuitty (1957) proposed the signal link in which

merges groups based on the minimum distance between the closest points
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between two groups. Letting r represent any element in cluster R, r € R,
and s be any element in cluster S, s € S, from the clusters in Step 3 of the
agglomerative clustering algorithm, distances between R and S are
calculated using the rule:

drysy = min{d,s} ,rE€Rands € S} (4.3.1)

Example4.3.2.1.1.thereare 5 samples (x, =2), (x, =11), (X, =0), (x, = 6),

and (X; =—4). Each sample represents one cluster and the distance

matrix D is
X Xy Xy Xy X
x [- 9 2 4 6
X, |9 - 11 5 15
D=d,s=x, |2 11 - 6 4
X, 4 5 6 - 10
Xs |6 15 4 10 - |

Merge x, and X; (d_ =d(X1, X3) =2), and the distance matrix D is updated

as follows:

Az, x5)0ep)= MIN { dy 5,0 Ay, 3= Min {9,11}=9
d(x1x3)(x4): min { dx1x4’ dx3x4}: min {4,6}=4
Aix,x))= Min { dy o, dy o }= Min {6,4}=4

{Xl ! X3 } X2 X4 X5

{x, %} | - 9 4 4
X, 9 - 5 15
X, 4 5 - 10

X, |4 15 10 -

Merge {Xl, X3} and x, (d :d({Xl, X3}1 X4) :4), and the distance matrix is

min

updated as follows:
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XX %} % X

{x, X5 X} - 5 4
X, 5 - 15
Xs 4 15 -

Merge {X;, X5, X,} and X5 (d . =0({X, X3, X,}, X;) =4), and the distance

min

matrix is updated as follows:

{X1v X3y X4 Xs} X,
{Xl’ X3y Xy Xs}{ - S }

X, 5 -

Finally, all samples are merged into one cluster {X;, X,, X3, X,, X} (see Figure 4.3)

Distance between 2 clusters
[0.e)
\

Figure 4.3. An example for using single-linkage algorithm
4.3.2.1.2.Complete Link (Farthest-Neighbor) Method

A second agglomerative method, referred to as complete linkage analysis,
maximum method, or furthest neighbor analysis. (Horn, 1943) proposed
Complete Link Method. In the single link method, dissimilarities were
replaced using minimum values. For the complete link procedure,

maximum values are calculated instead. Letting r € Rand s € S, where R
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and S are two clusters, distances between clusters R and S are calculated
using the rule
drysy=Max {d,s, r € Rands € S} (4.3.2)

Example 4.3.2.1.2Tollustrate rule (4.3.2.), we consider the same
dissimilarity matrix discussed in Example 4.3.2.1.1

X Xy Xy X Xs

x [- 9 2 4 6

X, |9 — 11 5 15
D=ds=x, |2 11 - 6 4
X, 4 5 6 - 10

X | 6 15 4 10 - |

1. Merge x, and X; (d,, =d(X, X;) =2) represents the most similar
objects. Using (4.3.2.), we replace minimum values with maximum values
A, 23)0e)= MX { o, x0 By, }=Max {9,11}=11

A, x3)0c)= MAX { dy, x,s Ay, y=Max {4,6}=6

A, x)0rg)= MAX { Ay, 1y By x }=MaX {6,4}=6

so that the new dissimilarity matrix is

{Xl ! XS} XZ X4 X5

{x, %} - 11 6 6
X 11 - 5 15
D, =d,= ?
rs X, 6 5 - 10
X 6 15 10 -

2.Merge x, and x, (d, =d(x,, x,)=5), and the distance matrix is updated

min

as follows:
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X %} o X3 X

{x,, X} — 11 6
{X,, X,} 11 - 15
Xs 6 15 -

3.Merge {¥, %} and X5 (a_ =d({X, X}, %) =6), and the distance matrix is
updated as follows:

{4 X5, X5} {%,, X}
{x,, X3, X;} - 15
{X27X4} |: 15 - }

4. Finally, all samples are merged into one cluster {X;, X;, X3, X,, X} (see

Figure 4.4).

12 =

T ]

Figure 4.4. An example for using complete-linkage algorithm

4.3.2.1.3.Average Link Method
In the average link method, the distance between two clusters is

Distance between 2 clusters
(00
\

defined as an average of dissimilarity measures. Sokal and Michener
(1958) proposed the average linkage cluster method. When comparing
two clusters of objects R and S, the single link and complete link methods
of combining clusters depend only upon a single pair of objects within
each cluster. Instead of using a minimum or maximum measure, the
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average link method calculates the distance between two clusters using

the average of the dissimilarities in each cluster [ Kandil (2011)].

2y Ls drs

nrns

where r € R,s € S, and ny and ng represent the number of objects in each
cluster. Hence, the dissimilarities in Step 3 are replaced by an average of

ngng dissimilarities between all pairs of elements r e Rand s € S.

Example 4.3.2.1.3.Toillustrate rule (4.3.3.), we consider the same

dissimilarity matrix discussed in Example 4.3.2.

Xp X3 Xz Xg o X

x [- 9 2 4 6

X, |9 - 11 5 15
D=d,s=x, |2 11 - 6 4
X, |4 5 6 - 10
Xs |6 15 4 10 - |

1- Merge X, and X; (d;, =d(X,, X;) =2 ), and the distance matrix D is updated

as follows:
A, 203)(e,)= AVEN { dy ,, Ay, y=aver {9,11}=10
Ay x5)(xy)= AVEN {dy . dy,x y=aver {4,6}=5
Ay xg)(xs)= AVEr { dy yo dy, x y=aver {6,4}=5

so that the new dissimilarity matrix is

{Xl’ X3} X2 X4 X5

{x,, X;} - 10 5 5
X, 10 - 5 15
X, 5 5 - 10
Xs 5 15 10 -

2-Merge x, and x, (d,,, =d(x,,x,)=5), and the distance matrix is updated as

min

follows:
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{Xl’ Xs} {X21 X4} X5

{x., x;} - 75 5
{X,, X,} 7.5 - 12.5
Xs 5 12.5 -

3-Merge {X;, X;} and Xg(d_ =d({X,, X3}, X;) =5), and the distance matrix is

updated as follows:

{Xl’ XS’ XS} {X27 X4}
{X, X3, X} - 10
{X27 X4} |: 10 - :|

4-Finally, all samples are merged into one cluster {X;, X,, X3, X,, Xs} (see Figure

4.5).

Figure 4. 5. An example for using average-linkage algorithm

16 [

12 —

Leh L]

Xy X3 X Xy X,

Distance between 2 clusters
o0
\

4.3.2.1.4 Centroid Method:

In the centroid method, distance is defined as the distance between
group centroids. In this method, the distance between two clusters R and
S is defined as the Euclidean distance between the mean vectors (often
called centroids) of the two clusters:

drys)= g5, =¥y — ¥sll 2 (4.3.4)
Where
(1) y& is the mean vectors for the observation vectors in R,
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(i) y5 is the mean vectors for the observation vectorsin S

_):71"1_ _:)__/sl_
Vr2 Vs2
S ST I d gt | 435
go=Z2x=| | ad y=EB2=| Tl @3l
-yrp- -ysp-

The two clusters with the smallest distance between centroids are merged
at each step. After two clusters R and S are joined, the centroid of the
new cluster RS is given by the weighted average

Ppg=-RRITSYS (4.3.6)

ng+ng
4.3.2.1.5. Ward’s Method:

Ward’s method, also called the incremental sum of squares method,
uses the within cluster (squared) distances and the between-cluster
(squared) distances (Ward 1963, Wishart 1969a). If RS is the cluster
obtained by combining clusters R and S, then the sum of within-cluster
distances (of the items from the cluster mean vectors) are:

SSER = Z?fl()’i - )_’R)'(Yi — Yr) (4.3.7)
SSEs = X5, (vi = ¥s) (i — ¥s) (4.3.8)
SSEgs = Z?jf(yi - yRS),(yi — Vrs) (4.3.9)
Where

(i) Nps =Ny +n0g

i — _NRYrtNngys

(i) yRS_—nR+nS
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(i) n,. is the numbers of points in R
(iv) n, is the numbers of points in S
(V) n,.. IS the numbers of points in RS

Since these sums of distances are equivalent to within-cluster sums of
squares, they are denoted by SSEg , SSEg, and SSEgs.
Ward’s method joins the two clusters R and S that minimize the increase
in SSE, defined as

Ipg = SSERs — (SSER + SSES) (4.3.10)
It can be shown that the increase I in (4.3.10) has the following two

equivalent forms:

IRS =nNg (3_’R - yRS),(}_]R - )_’RS) + ns(ys - yRS),(}_/S - 3_’Rs) (4-3-11)

_ NRrNs
nr +Tl

Vg — ¥s) g — 7s5) (4.3.12)
Where
SSEgs = ZnRS (i — yRS),(yi — Vrs)
SSErs = iR v ¥i — TRy Frs — TekS ¥ rsVi + Liks ¥ rs Vas
nRS

: _ 2
Since ypg = Zi= Y
nRs

SSEps = Z?Rig Yi ¥i —NgsY rsVrs ~MrsY rsVrs +NrsY rsVrs
SSEgps = Z?Rf Vi ¥i —MgsY rsVrs-

Similarly

SSEr = X2 ¥i ¥i —MRY rYr-

SSEs =X.5,¥i i —nsY s¥s.

Thus
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NRs ., ”’

Igs :Zl-:l Vi Vi —NgsY rsVrs _Z?fl yi,yi +NRY IR _Zinjl yi,yi
+15Y sVs
Ips = NRY'rYr + N5V Vs —NrsY rsVrs

Now we Show that when the right side of (4.3.11) is expanded, it reduces
to this same expression

Igs = ng(Fr = Jrs) (Fr — Yrs) + 1s(Fs — Yrs) (s — Vrs)

Irs=NrY rYr — NRY rYrs — NrY rsYr T MrY rRsVrs + Ns¥ s¥s —
NsY s¥rs — Ns¥ rs¥r + Ns¥ rsYVrs

Ips=NRY rYr + NsY s¥s — 2(gY g1V s) Yrst (Mg + 1)V rsVrs

Ips=ngY rYr + NsY sVs — 2(Mg*Ns)Y s Yrst (Mg + M)V rsVrs

Ips=NRY rYr + N5V sVs — (Mr+N5)Y s Yrs

Substitute ¥ S:M

ngtng

(NRYR+NsYs) (NRYRr+NsVs)
(nr+ng) (ng+ng)

(Ng*Ns5)Y rs Yrs =(Ngtns)

_nPRY' RIRHNRNSY R Is+NRNsY s TR+N* sV s Vs ()
TLR+TLS

. . —, — — — ngtng
Multiplying 1Yz Yr + nsy’sys by —
RTNs
2 — — — — —_r  — 2 —_—r  —
nptng —, — — — N°RY p YRTNGNRY RYRTNRNSY sVstN“gY ¢ Vs
n +n = |
- RY RVR sY sVs nR+ng Q)

Ips=ngY Vg + N5V Vs — (Ng+N5)Y rs Vrs

From 1 and Il
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IRS_

nZRj"R YRINgnRrY RIR +anSJ7'SJ7$+n257'5 Vs _nZRT"R YR—NMRNSY r Ys—NMRNSY s Vp _nZST"s Vs

np+ng
1 -7 = —r’ — —r = —y -
Ipg = ————NgNRY Vg + NNV sVs + —NpNsY 'R Vs — NrNsY s YR
ng + ng
Ips = % ()_’R 'yS),(yR '375) (4-3-12)7
RTNg

Thus by (4.3.12), minimizing the increase in SSE is equivalent to

minimizing the between-cluster distances.

If R consistsonly of y; (np = 1,y = y;) and S consists only of y;
(ns = 1,ys = y;), then
SSER and SSE are zero, and (4.3.10) and (4.3.12) reduce to

1x1 , 1
Lps = SSEgs = 1—+1(yi -y;) i —y) = Edz(yi'yj)

Lgs = SSEgs = %(Yi - J’j) (Yi - Yj) = %dz(yi,yj) (4.3.12)

4.3.2.2Thedivisive hierarchical (top-down):

Divisive algorithms begin with just only one cluster that contains all
sample data. Then, the single cluster splits into 2 or more clusters that
have higher dissimilarity between them until the number of clusters
becomes number of samples or as specified by the user. [Kandil (2011)].
Two clusters are merged when the distance is low and a cluster is split
into smaller clusters when the distance is large (when the elements are not
close enough).The following algorithm is one kind of divisive algorithms
using splinter party method.
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Divisive algorithm using splinter party method [Hui-Chuan
(2009)]:

1.

Start with just only one cluster. That is, all samples in this one
cluster.
Repeat step 3, 4, 5, 6 until cluster number is the number of samples
or what we want.
Calculate diameter of each cluster. Diameter is the maximal
distance between samples in the cluster. Choose one cluster R
having maximal diameter of all clusters to split.
Find the most dissimilar sample from cluster R. Let depart from
the original cluster R to form a new independent cluster S (now
Cluster R doesn’tinclude sample). Assign all members of cluster R
to M.
Repeat 6 until members of cluster R and S don’t change.
Calculate similarities from each member of My to cluster R and
S, and let the member owning the highest similarities in M, move to

its similar cluster R or S. Update members of R and S.

Exampel 4.3.2.2we take a simple example to describe the method above.

First,

the distance matrix D of 5 samples X, X,, X3, X4, X5 is

|
N

'_\
o
o ©O© o1
N
I

Our processing steps are as follows:
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1- Because there is only one cluster, this cluster has maximal diameter. For a
start, we split this cluster.

2-Calculate average distances from one sample to the others. For example, the
average distance from x, to x,, X3, x, and X5 is (2+6+10+9)/4=6.75,
and the others:

X, 1 (2+5+9+8)/4=6,
X;:(6+5+4+5)/4=5
X,:(10+9+4+3)/4=6.5,
Xs 1 (9+8+5+3)/4=6.25.

Sample x, has maximal average distance, so extract x, from the cluster. Now we
have 2 clusters: {X,, X3, X;, Xs} and {x}

1-Find average distances from x,, X3, x, and X5 to clusters {X,, X3, X4, Xs }

and {x}.

X0 X5, Xy %6} 1%}
X, 7.33 2
X, 4.67 6
X, 5.33 10
Xs 5.33 9

The distance from x, to cluster {x,} is mnimum, so put x, into cluster {x}. Now

clusters are updated to {X31 X4 X5} and {x,x,}. Repeat step 6 of the algorithm to

check if members of each cluster are updated.

X5 Xy %6} X%}

X, | 7.33 2

Xy 4.5 55
X, 35 9.8
Xs 4 8.5

The distance from x,to cluster {x,x,} is also mmnimum and cluster members don’t

change agan. Go to step 3 of the algorthm. Now there are 2 clusters {x,x,} and

g, Xy, Xs
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The diameter of the cluster {x, x,} is:
diameter ({x;, X, }) = max( |x, — X,| ) =2.
The diameter of cluster {X3, X, Xs } is

diameter ({X;, X,, X }) = max( |X3 - X4| ’ |X3 - X5|’ |X4 - X5|) =9.

1-We choose the cluster {Xg, X4 X5} to split (has maximal diameter of all clusters).

Calculate average distances from one sample to the others in cluster

{X3’ X4’ XS}-

X;:(4+5)/2=45
X,:(4+3)/2=35
X;:(5+3)/2=4

So split {Xz, X, X5} into {X;} and {X,, X.}. The average distances from x, and X5 to

clusters {X;, X;} and {X;} are:

{X4 ! XS} X3
X, 3 4
Xg 3 5

Because minimum distance is 3, cluster members of each cluster don’t update. Go to

step 3 of the algorithm.

1-Now we have 3 clusters {x,, x,}, {Xg}, and {X4, X5}. Their diameters are 2, 0,

and 3. Because there is only one sample in cluster {Xg}, don’t think about this
cluster. We decide split the cluster {x,x,}.

2-Split {x,, x,} mto {x,} and {x,}. Because cluster members ofeach cluster don’t

update, go to step 3.
3-Now we have 4 clusters {x,},{x,} {X;} and {X, X.}. Only the cluster {X,, %}

has more than one sample and have maximal diameter, so split {X4, X5}
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4-Split {X4,X5} mto {x,} and {X5}. Each sample represents one cluster, so stop

(see Figure 4.6).

X0 X5, X3, X4, X5 }

‘ | ’ divisive step 1 ‘

X5 X4 X5}
divisive step 4 ‘ﬁ r‘—L’ divisive step 2 ‘
X {X4, X5}
’ divisive step 3 ‘
X, Xg

Figure 4.6. An example for hierarchical divisive algorithm

Advantages of the Hierarchical Clustering Methods:

(1) Hierarchical methods are suitable for datasets that possess natural
nesting relationships between the clusters. Examples of such
datasets include datasets from biology and animal taxonomies
[Dunham (2002)].

(it) Moreover, since the distance or similarity is presented through a

matrix to these algorithms, the algorithms are able to handle

different attribute types [Berkhin (2002)].

Limitations of the Hierarchical Clustering Methods:
(i) One of the weaknesses of the hierarchical methods is that, once a
cluster is formed, the objects in the clusters may not be relocated to

improve the results. As such, unlike the K-means algorithm where
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objects are iteratively relocated to improve the result, the
hierarchical algorithms lack such possibility.

(i) The algorithms are also sensitive to outliers [Xu and Wunsch
(2005)]. Dunham (2002) also noted that, due to the time and space
complexity of these algorithms, they may not be suitable for large

datasets.

4.3.3 Density-based Methods:

Unlike the hierarchical and partitional cluster analysis algorithms,
which consider the distance or similarity between the objects to find the
clusters, density-based methods are based on the notion of density.
According to Dunham [Dunham ( 2002)], the term density is defined as
the minimum number of objects located within a certain distance of one
another. Thus, the clusters are represented by the dense areas of the data
objects and are usually separated by the areas with low density. In this
approach, the clusters may take any arbitrary shape and grow in any
direction, as long as the density in the neighboring area exceeds a certain
threshold [Han and Kamber (2006)]. Examples of algorithms from this
family are: DBSCAN (Density-Based Spatial Clustering Algorithm with
Noise) [Ester and Xu (1996)] and DENCLUE (DENsitybased
CLUstEring) [Laflin (1998)]. As the name implies, the DBSCAN
algorithm is suitable for spatial datasets with noise. The algorithm also
discovers clusters of arbitrary shape [Han and Kamber (2006)].
However, this algorithm is very sensitive to the choice of user-defined
parameters (e.g. the radius of the neighborhood) [Han and Kamber
(2006)]. The DENCLUE algorithm is suitable for high dimensional
datasets. Similar to the DBSCAN algorithm, this algorithm also discovers
arbitrary shaped clusters and handles datasets with large amount of noise
[Han and Kamber (2006)].
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4.3.4 Grid-based Methods:

In the Grid-based cluster analysis [Han and Kamber (2006)]
methods, the entire data spaceis first divided into a finite number of cells
that form a grid structure. The cluster analysis is then performed on this
grid data, instead of the original data points. Since the number of cells in
the grid data is usually much less than the number of original data points,
the computation and processing time of this algorithm are relatively faster
than many other cluster analysis algorithms. The algorithms from this
family are mostly suitable for spatial datasets. STING (STatistical
INformation Grid) [Wang et al (1997)], WaveCluster [Sheikholeslami et
al (1998)], and CLIQUE [Agrawal et al (1998)] are an example of
algorithms based on this method. The STING algorithm manipulates the
statistical information (e.g. count, maximum, minimum, and standard
deviation) of the grid cells to process the queries. The algorithm is query-
independent as the statistical information regarding the attributes are pre-
computed and stored in each cell. STING is also very efficient. Moreover,
when a given dataset is updated, this algorithm is able to perform
incremental updates without re-computing all the statistical information
[Han and Kamber (2006)]. However, the user-specific parameters (e.g.
the number of grids and number of layers) need to be provided by the users
and therefore the selection of parameters may have impact on the end
result. The WaveCluster algorithm, in contrast, applies a signal processing
technique called wavelet transform, to find the clusters. More information
regarding wavelet transform and WaveCluster are presented in
[Sheikholeslamietal (1998)], [Han and Kamber (2006)]. The algorithm
IS not sensitive to outliers, discovers clusters of arbitrary shapes, and
performs well for large datasets. However, one of the drawbacks of this

algorithm is that it may only be applied to low-dimensional datasets. On
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the other hand, the CLIQUE algorithm, which integrates density-based and
grid-based algorithms together, is suitable for large, highly dimensional
datasets.

4.3.5 Model-based Methods:

Model-based approaches assume that all the data is generated by a mixture
of underlying statistical distributions. For example, the EM (Expectation-
Maximization) algorithm is a popular model-based approach that performs
expectation-maximization analysis based on statistical modeling [Han and
Kamber (2006)]. The COBWEB and SOM (Self-Organized Map)
algorithms also fall into this category, where the former is a conceptual
learning algorithm and the latter is a neural network-based algorithm. A
detailed discussion of these algorithms is presented in [Han and Kamber
(2006)].

4.3.6 Clustering High Dimensional Data:

Highly dimensional datasets consist of several hundreds or even
thousands of attributes. For instance, objects in a text dataset are usually
regarded as a collection of documents and each document consists of
hundreds or even thousands of words and terms. Thus, the attributes for
this type of datasets are the collection of these words and terms gathered
from the documents. In such cases, the previously discussed clustering
algorithms may not work well as the data become very sparse with the
increase of the number of dimensions. As a result, when the similarity
between the data points is calculated, the result is usually a very small value
which may not contribute to the computation. Moreover, as Han and
Kamber (2006) noted, the average density of these points is also likely to
be very low. Therefore, new or modified algorithms that handle the

problem of high dimensionality are necessary. Two such methods for
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clustering high-dimensional datasets are Subspace Clustering and Frequent
Pattern-based Clustering. The subspace clustering algorithms such as
CLIQUE and PROCLUS, tend to find the clusters from a subset of
dimensions of the original set of attributes. On the other hand, the frequent
pattern-based clustering algorithms search for frequently occurring
patterns from the dataset and use these patterns to find the clusters [Han
and Kamber (2006)]. With a growing number of domains containing high
dimensional data, performing cluster analysis on highly dimensional
datasets has become challenging. Therefore, special care is needed to
successfully perform cluster analysis on this type of datasets.

4.3.7 Constraint-based Clustering

The Constraint-based methods consist of cluster analysis algorithms
that heavily rely on user guidance. Users provide various constraints and
information to the algorithms so that the clusters may be generated based
on the preferences given by the users. Yin et al. (2005) proposed one such
user-guided clustering algorithm called CrossClus. The algorithm is
suitable for multi-relational datasets. The algorithm starts with selecting a
set of relevant features from multiple relations to construct a single object
type, based on the user interest and domain specific knowledge. Next, the
K-medoids based algorithm, CLARANS is applied to the selected features

to find the clusters.
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V. Application Study and Results

9.1 Overview of the study

Multidimensional scaling and cluster analysis are widely used in
marketing research for positioning of different brands of the
companies. It would be desired and beneficial for any company to
know how its brand of products is rated among public when
compared with other similar competing brands. (Verma (2013).
Multidimensional scaling can create a visual presentation of the
subjective dimensions that are not directly shown in the data. By
showing these objects visually on a map, it will be easier for
public to associate close together objects as similar or close in

terms of preference.

Cluster analysis can be used to segregate all the brands of certain product
into some clusters, that assist the companies in identifying their current
location within the market and who their closest rivals are. This helps the
companies to pay attention and focus on their marketing activities of their

brands in the same cluster and try to modify it to make it much better.

9.2 StudyData.

The data was collected by some questionnaires which were distributed
among different car exhibitions found in the city of Banha, the sample size
was a 20 customers. The owners of the car exhibitions were asked to give
these questionnaires to their customers. The set of cars used in the
questionnaires and in our experiment is presented in Table 5.1.

The Twenty customers were asked to rate the 10 cars by showing the cards
bearing the name of a pair of cars. All possible pair of cars were shown,

and the customers were asked to rate their preferences of one car over the
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other on a scale of 100 points. If the customer perceived that the two cars
were completely dissimilar, a scoreof 0 was given, and if the two cars were
exactly similar, a score of 100 was given.

Object

Kia Cerato
Chevrolet Aveo
Renault Fluence
Toyota Corolla
Mitsubishi Lancer
Geely Emgrand
Hyundai Elantra
Speranza Tiggo
Nissan Sunny

0 | Peugeot 208

POooO~NOoO ok wWwMNPE

Table 5.1 Cars’ object set

After obtaining the similarity matrix for each consumer, the average of
these similarities was calculated for each pair of objects to make the final
similarity matrix (the input data).

To summarize, the data produced from the experiment are consisting of:
A collection of 20 proximity matrices, one for each consumer. Each
proximity matrix is a 10 x 10 symmetric matrix in which cell s;; contains
the numerical value of the similarity between carsi and j as judged by that
customer. Only one similarity was obtained for each object pair from each
customer. These data are presented in Appendix A.

An average similarity matrix over all subjects was obtained by averaging
the similarity for each object pair over all subjects. This matrix (presented
in Table 5.2) is used as SPSS input data.
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kia | Chevrolet| Renault | Toyota | Mitsubishi | Geely | Hyundai | Speranza | Nissan | Peugeot

kia 100.0 34.8 79.2 86.0 76.3 63.3 57.9 62.5 65.6 26.0
Chevrolet 34.8 100.0 54.4 56.0 30.5 40.7 86.0 80.7 23.6 60.9
Renault 79.2 54.4 100.0 70.5 51.2 37.8 77.7 71.6 69.4 70.0
Toyota 86.0 56.0 70.5 100.0 66.3 90.0 50.1 88.6 6.3 89.4
Mitsubishi | 76.3 30.5 51.2 66.3 100.0 35.4 76.0 67.5 22.6 63.1
Geely 63.3 40.7 37.8 90.0 35.4 100.0 77.1 54.1 35.1 67.9
Hyundai 57.9 86.0 77.7 50.1 76.0 77.1 100.0 66.1 76.8 59.3
Speranza 62.5 80.7 71.6 88.6 67.5 45.1 66.1 100.0 713 33.6
Nissan 65.6 23.6 69.4 66.2 22.6 35.1 76.8 713 100.0 59.3
Peugeot 26.0 60.0 70.0 89.4 63.1 67.9 59.3 33.6 59.3 100.0

Table 5.2 Average similarity Matrix for Cars

Using Green, Carmone and Smiths (1989) recommendations, since
there are 10 brands 2 dimensions are most appropriate.

The data file was prepared before using SPSS to generate the outputs in
multidimensional scaling. The data was exported directly into the output
window of SPSS. In the data file the ten variables were defined as ordinal
because the scores were representing the dissimilarity ratings. After
defining the variable names and their labels, the command sequence
(Analyze — Scale - Multidimensional Scaling) was selected on the SPSS
program. In Model tab, two dimensional solution was investigated along
with the stress value as 0.0367. These two dimensions were the attributes
of these brands drawn through knowledge of the market based on the
surveys of the customers. Thus, the two dimensions were named as
follows:

Dimension 1: Stylish

Dimension 2: Problematic

In terms of the perceptual map shown in figure 1 below, the first dimension
seems to correspond with Style ranging from less stylish (on the left) to

more stylish (on the right) and dimension 2 seems to correspond with
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problems in the car ranging from more problematic (on the top) to less
problematic (on the bottom).

The opposites of car brand characteristics have been identified which
seem to be linked with the dimensions. The dimensions seem to be
strongly based on performance and style of the car. If the dimensions
are correct then the following cars on the right side of Dimension 1 in
the Euclidean Distance Model should be more stylish and the cars on
the bottom of Dimension 2 are less problematic with higher

performance and safety.

: More
o Problematic
c
e
(7]
c
[¢B)
£
a) Dimgnsion 1
Less L. . More
Stylish 1 Stylish
>
Less
Problematic
\ 4

Figure 1 showing the two dimensions used in our study.
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9.3 Results:
5.3.1 Basic MDS analysis of cars data

Non-metric solutions were generated using the SPSS program by use the
average similarity matrix for cars as input data. The results of SPSS were:

Distance matrix for cars

Kia | Chevrolet | Renault | Toyota | Mitsubishi | Geely | Hyundai | Speranza | Nissan | Peugeot
Kia 0
Chevrolet | 0.889 0
Renault 1.364 0.765 0
Toyota 1.198 0.693 1.413 0
Mitsubishi | 1.094 0.307 0.473  0.942 0
Geely 1.004 0.681 0.413 1.373 0.52 0
Hyundai 0.599 0.928 1.633 0.827 1.225 1.375 0
Speranza 0.703 1.128 1.153 1.697 1.149 0.744 1.289 0
Nissan 0.858 0.175 0.634 0.866 0.239 0.506 1.008 0.99 0
Peugeot 0.293 0.961 1.26 1.404 1.091 0.862 0.889 0.412 0.876 0

Final Stress value =0 .0367

The MDS solution was achieved through an iterative procedure, in which
an initial solution is established. Further iterations attempt to improve this
solution in the context of a stress criterion.
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Final coordinates for cars data in 2 dimensional :

Dimensions
1 2
Kia 0.272 0.5
Chevrolet 0.043 -0.318
Renault -0.752 -0.037
Toyota 0.776 -0.484
Mitsubishi -0.253 -0.5
Geely -0.484 -0.194
Hyundai 0.787 0.279
Speranza -0.356 0.687
Nissan -0.045 -0.522
Peugeot 0.012 0.59

2 dimensional Object Space for cars Data:

Object Points

Common Space

0.57 Speranza
o Peugeot
0.6 [e] Kia
(o]
0.4 Hyundai
< o
= 0.27
n
5 Renault
E 0.0000-] o]
O Geely
-0.27 © Chevrolet
© T
- oyota
0.4 Mitsubishi Mizsan B
o o o
0.5
T T T
-1.0 -0.5 oo 0.5 1.0

Dimension 1
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By looking to 2 dimensional Object Space for cars data, it may be
concluded that the car brands like Peugeot, Speranza and Kia having more
problems than other brands of similar cars while Toyota, Nissan and
Mitsubishi have the lowest kind of problems. Brands like Toyota and
Hyundai are similar to each other in terms of style and more stylish than

the other cars.

9.3.2 Carsclusteranalysis:

K-means cluster solutions were generated using the SPSS program by use
the average similarity matrix for cars as input data. The results of SPSS

WEre:

As a further way to analyze how consumers perceive the 10 cars brands in
the study, Cluster analysis was used based on the stimulus coordinates to
put the cars brands in clusters, this will assist the companies in identifying
there current location within the market and who their closest rivals are.
This may mean the brands should focus closer on the marketing activities
of the brands in the same cluster.

From the Euclidean distance model it seems reasonable to identify 4
possible clusters; Cluster analysis will be used through SPSS to check if
these 4 clusters are correct or if other clusters are more suitable.

The 4 cluster analysis offers a good solution and this has allowed the profile

of the four following groups.

Clusters

1 Kia, Speranza and peugeot

2 Geely, Chevrolet, Nissan and Mitsubishi
3 Renault

4 Hyundai and Toyota
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Derived Stimulus Configuration
Euclidean distance model

Object Points

Commeon Space

Cluster 1
087 Speranza
Peugeot
(o] ge
- Cluster IV
—
0.4 Hyundai
o™ Cluster 11 3
c
=] 0.2
] Cluster 11
E Renault
£ 0.0000 =
(a] eely
-0.27 © Chevrolet
© Ti
- ovota
04 Mitsubishi Nissan ’
0 [}
o I—
-0.6-
T T ]
A0 .05 0.0 05 1.0
Dimension 1

Cluster Profiles:

Cluster I:

This cluster contains Kia, Speranza and peugeot. They are perceived to be
more problematic, moderate in style. Peugeot and Kia are closer to each
other within the group and Speranza is more independent within the cluster.
It can be seen in this cluster, how Kia is making its move away from
Speranza and Peugeot to be close to cluster 4.

Cluster I11:
It’s interesting to see that Geely has somehow differentiated itself from
other cars (Chevrolet, Nissan and Mitsubishi) within the same cluster.

Geely has sufficiently differentiated itself from the expected competition
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of other companies by modifying the style. Out of Cluster 2 Nissan and
Mitsubishi are the most differentiated, this is because they have less
mechanical problems than other cars in the same cluster. Chevrolet and
Nissan are in excellent position in the cluster and map as they are moderate

stylish and less problematic when compared with the others.

Cluster IlI:

This cluster contains only Renault. It has firmly established itself as the
low cost choice, this seems to be a good position, although seen as a low
quality caras it is moderate problematic and less stylish than the other cars.
Geely and Speranza seem to be close rivals in other clusters in terms of
style. Geely in cluster 1l seems to be less problematic and more stylish than

Renault in cluster I1I.

Cluster IV:

This cluster contains Hyundai and Toyota, However, it isn’t very clear if
these brands are in strong direct competition, Toyota seems to be in the
best position among cars in terms of reliability with no major problems and
more stylish than the others with no close rivals regarding the problems
that can appear in the cars along with the time. Although Hyundai is
sufficiently differentiated in the eyes of consumers in terms of style, they

claim that the car is moderate problematic and require more maintenance.

MDS requires caution in interpretation but can offer interesting
insights into market evaluations of property attributes. Car companies
will recognize that MDS provides an important step in identifying

people’s first impressions of different car brands, of how they ‘feel’
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about particular car attributes. This evaluation of attributes is
important where rationality may not necessarily determine choice.
The application of cluster analysis after multidimensional scaling on
the same data set inspire more confidence inthe accuracy of the results
and provided a range of valuable marketing implications, by showing
how various attributes are closely linked.

Once the preference points of the customers were identified, they
could be easily plotted on a graph along with the different brands.
Further investigation of the grouped preference points may lead to
identification of some preference segments; this would be more
interesting when compared to the clusters which the study identified.
This type of study would provide a better basis to consider brand re-
positioning and new product introduction since brand repositioning
strategies and new product introduction strategies can address existing

(known) preference segments.

More stylish and less problematic cars are perceived to be expensive
ones. Performance and Style attributes are closely linked, it seems that
this is how consumers view a brand in terms of its visual appeal and

this can dictate a consumer’s opinion.

Although the major finding in this study, based on the
multidimensional ~ scaling solution, comes from consumer’s
perceptions of different car brands in two dimensions manner, it may
be interesting and worthwhile to investigate three dimensional
perceptual maps to gain further insights into the nature of these brands
image. Also more in depth analysis could be done, possibly from

grouping consumers into different socioeconomic groups to see how
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these perceptions change depending on the cluster they are part of. It

also could have led to some interesting multidimensional unfolding

analysis, to identify ideal points for the different socioeconomic

groups, this could have led to valuable marketing implications,

suggesting that various car brands could be targeted to specific groups

more or less, and that a specific class group could have a stronger

predisposition towards a particular car brand and are more likely to be

frequent shoppers than subjects from other classes.

Future Study:

1. We suggest using clustering metric multidimensional scaling to

construct a better transportation network between Egypt

governorates based on the distance points between them.

2. We suggest using clustering nonmetric multidimensional scaling to

establish and construct some economic developmental programs for
each Egyptian governorate depending on its economic and social

status.

. We suggest developing a new formulation that is intended for using

multidimensional scaling in conjunction with cluster analysis in just

one step.
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Cars similarity data_

APPENDIX A: CARS SIMILARITY DATA

The following tables present the similarity matrix for each subject in the

cars study.

Cars Similarity Matrix for Subject 1

2 3 4 5 6 7 8 9 10

Ooo~NOYTULLE, WN -

=
o

23

99 51

99 23 78

90 16 22 49

74 55 50 99 13

14 88 77 75 50 70

25 95 48 99 99 79 99
60 36 69 24 21 53 99 99

0 89 72 81 77 71 74 51 71

Cars Similarity Matrix for Subject 2

1 2 3 4 5 6 7 8 9 10

OO NOOULLDE WN B

=
o

62

77 16

98 14 55

76 22 40 47

84 16 16 81 7

17 80 36 93 60 90

76 93 86 80 94 36 19
74 20 16 38 5 18 6 71

10 72 78 92 92 86 16 2 99
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Cars similarity data_

Cars Similarity Matrix for Subject 3

1 2 3 4 5 6 7 8 9 10
1
2 85
3 82 15
4 97 28 56
S 51 31 36 43
6 79 27 7 82 7
7 13 84 38 87 76 82
8 82 99 73 68 80 40 20
9 69 24 30 27 16 12 28 80
10 15 80 78 90 72 66 17 5 95
Cars Similarity Matrix for Subject 4
1 2 3 4 5 6 7 8 9 10
1
2 49
3 96 96
4 97 92 94
S 68 12 90 93
6 77 44 88 90 26
7 97 93 94 25 93 49
8 54 76 92 94 20 24 93
9 47 48 92 94 35 18 94 23
10 21 47 90 92 68 67 87 55 15
Cars Similarity Matrix for Subject 5
1 2 3 4 5 6 7 8 9 10
1
2 9
3 90 70
4 87 65 6
S 87 77 83 83
6 33 79 25 89 39
7 86 86 99 22 90 40
8 81 30 57 88 69 39 97
9 74 20 94 78 5 81 92 88
1 23 26 72 94 2 76 81 20 5
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Cars similarity data_

Cars Similarity Matrix for Subject 6

1 2 3 4 5 6 7 8 9 10

P OO ~NO Ol WN -

10

53 75

99 99 99

87 27 65 99

60 66 72 99 99

96 99 90 10 90 75

98 99 91 98 88 34 99
73 15 90 99 9 56 95 75

54 62 84 99 95 53 85 91 49

Cars Similarity Matrix for Subject 7

1 2 3 4 5 6 7 8 9 10

P OO ~NO Ol WN PP

69

63 58

76 85 79

52 14 51 81

61 39 35 83 36

80 90 93 6 78 85

28 87 83 94 64 44 9o
80 20 92 98 51 23 80 33

78 28 40 99 36 71 82 62 13

Cars Similarity Matrix for Subject 8

1 2 3 4 5 6 7 8 9 10

P OooO~NOoO Ul WN -

16

81 47

56 32 71

87 68 44 71

60 35 21 98 34

84 94 98 57 99 99

50 87 79 73 19 92 45
99 25 53 98 52 17 99 84

16 92 90 83 79 44 24 18 98
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Cars Similarity Matrix for Subject 9

1 2 3 4 5 6 7 8 9 10

1
2 14
3 61 47
4 79 96 77
S 72 21 12 73
6 66 12 28 81 13
7 66 64 75 41 71 82
8 51 67 32 93 49 66 86
9 7 20 67 71 15 56 76 69
10 19 51 6 88 25 81 50 8 8

Cars Similarity Matrix for Subject 10

1 2 3 4 5 6 7 8 9 10

1
2 11
3 90 69
4 72 26 90
S 93 17 69 24
6 39 34 36 98 80
7 26 82 77 85 53 99
8 80 74 75 99 93 87 13
9 73 8 91 35 17 17 99 91
10 24 62 90 76 85 64 77 24 65

Cars Similarity Matrix for Subject 11

1 2 3 4 5 6 7 8 9 10

1
2 21
3 97 49
4 99 21 76
S 88 14 20 47
6 72 53 48 97 11
7 12 86 75 73 48 68
8 23 93 46 97 97 77 97
i 58 34 67 22 19 51 97 97

0 87 70 79 75 69 72 49 71
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Cars Similarity Matrix for Subject 12

1 2 3 4 5 6 7 8 9 10
1
2 64
3 81 18
4 98 16 57
S 78 24 42 49
6 86 18 18 83 O
7 19 82 38 95 62 92
8 78 95 88 82 96 38 21
9 76 22 18 40 7 20 8§ 73
10 10 74 80 94 94 88 18 4 99
Cars Similarity Matrix for Subject 13
1 2 3 4 5 6 7 8 9 10
1
2 95
3 92 25
4 97 38 66
S 61 41 46 53
6 89 37 17 82 17
7 23 94 48 97 86 92
8 92 99 83 78 90 50 30
9 79 34 40 37 26 22 38 90
10 25 90 88 90 82 76 27 15 95
Cars Similarity Matrix for Subject 14
1 2 3 4 5 6 7 8 9 10
1
2 39
3 86 86
4 97 82 84
5 58 2 80 83
6 67 34 78 80 16
7 87 83 84 15 83 39
8 44 76 82 94 10 14 83
9 37 38 82 84 25 8 84 13
1 11 37 80 92 58 57 77 45 15
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Cars Similarity Matrix for Subject 15

1 2 3 4 5 6 7 8 9 10
1
2 10
3 91 71
4 88 66 7
S 88 78 84 84
6 34 80 26 90 40
7 87 87 99 23 91 41
8 82 30 58 89 70 40 98
9 75 21 95 79 6 82 93 89
10 24 27 73 95 23 77 82 21 6
Cars Similarity Matrix for Subject 16
1 2 3 4 5 6 7 8 9 10
1
2 9
3 52 74
4 98 98 98
S 86 28 64 98
6 59 67 71 98 98
7 95 98 90 9 89 74
8 97 98 90 98 87 33 98
9 72 14 89 98 8 55 94 74
10 53 61 83 98 94 52 84 90 48
Cars Similarity Matrix for Subject 17
1 2 3 4 5 6 7 8 9 10
1
2 61
3 62 58
4 77 85 80
S 53 14 52 81
6 62 39 36 83 37
7 81 90 94 6 79 85
8 29 87 84 94 65 44 91
9 81 20 93 98 52 23 81 33
1 79 28 41 99 37 71 83 62 14
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Cars Similarity Matrix for Subject 18

1 2 3 4 5 6 7 8 9 10

P OO ~NO Ol WN -

15

80 47

55 32 70

86 68 43 71

59 35 20 98 33

83 94 97 57 98 99

49 87 78 73 18 92 44
98 25 52 98 51 17 98 84

15 92 89 83 78 44 23 18 97

Cars Similarity Matrix for Subject 19

1 2 3 4 5 6 7 8 9 10

P OO ~NO Ol WN PP

24

81 47

89 96 87

82 21 22 73

76 12 38 81 23

76 64 85 41 81 82

61 67 42 93 59 66 96
17 20 77 71 25 56 86 69

29 51 16 88 35 81 60 8 18

Cars Similarity Matrix for Subject 20

1 2 3 4 5 6 7 8 9 10

P OO ~NOoO Ol WN P

80 69

62 26 80

83 17 59 24

29 34 26 98 70

16 82 67 85 43 99

70 74 65 99 83 87 3
63 8 81 35 7 17 89 91

14 62 80 76 75 64 67 24 55
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