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 Abstract 

II 

Abstract 

 

Multidimensional scaling and cluster analysis are two numerical 

techniques that assist the researcher in ascertaining the structure of data in 

different spaces. Multidimensional scaling allows the researcher to convert 

large amounts of similarity or proximity data into a geometric picture while 

Cluster analysis represents an area of statistics that is concerned with 

sorting the observed data into some groups (clusters) based on the 

similarity. 

It is highly recommended to perform cluster analysis in conjunction 

with MDS for many reasons: 

(i) Cluster analysis may provide the researcher with ways of 

understanding similarity criteria when interpretations of 

geometric dimensions are not readily apparent.  

(ii) In some clustering problems as in case of lacking metric data 

attributes. For example, we only have the dissimilarit ies 

between data objects. The dissimilarity between two data 

objects can be metric or nonmetric. To obtain data in the 

metric space from these dissimilarities, a possible solution is 

using multidimensional scaling (MDS).  

 
There are several models of MDS and CA available to the 

researcher; the choice mainly depends upon the type of data believed to be 

under the study.  

      In this thesis, several models of MDS and CA were introduced. In 

addition, we provided a solved mathematical example for each models.  
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          Since the MDS and cluster analysis are mainly based on the 

proximity data, we introduced the different patterns of proximity measures 

(similarity and dissimilarity) in addition to solved mathematical example 

for each measure. 

      In this study we performed an application of cluster analysis and 

multidimensional scaling on one data set from different car exhibitions and 

agencies in Benha city. The data was collected based on the responses we 

received in all the questionnaires which were distributed among different 

car exhibitions in Benha city. The sample size was 20 customers. The 

Twenty customers were asked to rate the 10 cars by showing the cards 

bearing the name of a pair of cars. All possible pair of cars were shown, 

and the customers were asked to rate their preferences of one car over the 

other on a scale of 100 points. If the customer perceived that the two cars 

were completely dissimilar, a score of 0 was given, and if the two cars were 

exactly similar a score of 100 was given. The Statistical Package for Social 

Sciences (SPSS) was used in order to apply the multi-dimensional scaling 

to convert cars market similarity data into a geometric picture. SPSS was 

then used to group different cars brands in this geometric map into some 

clusters. After finalizing the analysis and getting the result, we performed 

interpretations of the results and provided insights for some companies  to 

know how their brand of products is rated among other similar competing 

brands of other companies.        

To achieve the purpose of this study, the thesis consists of five 

chapters as follow: 

Chapter I: An introduction includes a background on multidimensional 

scaling and cluster analysis in addition to the aims of the 

study.  
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Chapter II: Measures of proximity which discuss the different patterns 

seen in proximity measures (similarity and dissimilarity). 

Chapter III: Multidimensional scaling in terms of concepts and methods. 

 Chapter IV: Cluster analysis in terms of concepts and methods. 

 Chapter V:  An application of cluster analysis and multidimensional 

scaling. 
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I.  INTRODUCTION 

1.1  Introduction 
The amount of data collected from various sources is increasing. 

With the invention of new technologies, preserving this enormous volume 

of data for future reference and analysis has become more manageable. In 

contrast, the task of discovering underlying patterns and hidden 

information from data has become more challenging and complex. 

According to Witten et al. (2005) "As the volume of data increases, 

inexorably, the proportion of it that people understand decreases, 

alarmingly1'. As such, we need automated and practical tools and 

techniques to take full advantage of the information lying hidden in the 

data. This is where Data Mining techniques come to aid. Data Mining is 

defined as the process of automatic discovery of hidden, interesting, and 

previously unknown patterns in data stored electronically [Witten and 

Frank (2005)]. Some of the benefits of mining data are to extract previously 

unknown information and use it to predict future trends, make decisions, 

categorize or group data to discover common characteristics, amongst 

others. Among various data mining techniques, cluster analysis (CA) 

and multidimensional scaling (MDS) are interesting and fast growing 

topics. 

Multidimensional scaling and cluster analysis are two numerical 

techniques that assist the researcher in ascertaining the structure of data in 

different spaces. 

 Multidimensional scaling allows the researcher to convert large 

amounts of similarity or proximity data into a geometric picture. Upon 

obtaining a geometric representation, it is the researcher's task to develop 

interpretations for the different dimensions in that picture. 
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Multidimensional scaling analyses typically report results in two or three 

dimensions for ease of viewing and interpretation by the researcher, but it 

is possible to search for better goodness-of-fit in higher dimensional spaces 

indeed.  

Cluster analysis is a related visualization technique that returns a tree 

structure rather than a geometric configuration. It is particularly useful 

when used in conjunction with MDS since it may provide the researcher 

with ways of understanding similarity criteria when interpretations of 

geometric dimensions are not readily apparent. Cluster analysis is also 

appropriate for situations where the multiple frames of reference or other 

violations of modeling assumptions, geometric configurations provide 

poor fits to rating data.( Tversky and Hutchinson (1986)). 

         Generally, there are two types of attributes involved in the data to be 

clustered: metric and nonmetric. If all the data attributes are metric, a data 

object can be represented by a vector in the metric space. A metric space 

is a set S with a global distance function (the metric d) that, for every two 

points x, y in S, gives the distance between them as a nonnegative real 

number d(y,x).A metric space must also satisfy: 

1. d(x, y) = 0, if x = y. 

2. d(x,y) = d(y,x). 

3. The triangle inequality: d(x,y) < d(x,z) + d(z,y). 

  

In many clustering problems, we do not have metric data attributes. 

For example, we only have the dissimilarities between data objects. The 

dissimilarity between two data objects can be metric or nonmetric. To 

obtain data in the metric space from these dissimilarities, a possible 

solution is multidimensional scaling (MDS). Besides, MDS can be used to 
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transfer data from a higher dimensional metric space, say m-dimension, to 

a lower dimensional metric space, say p-dimension, where p < m. 

There are several models of MDS and CA available to the 
researcher; the choice mainly depends upon the type of data believed to be 
under study.  

1.2  Aim of the proposed study:                                                                                                
  

Clustering analysis and MDS will be applied to a data set of car brands and 

their ratings among customers in car market. In this study, we are trying to 

describe the relationships among the 10 car brands. The results produced 

by application of these methods together can be then used to investigate 

whether different car brands mentioned in the market are strongly related 

or not. MDS methods will be used to create separate displays for each car 

based on two factors (2 dimensions) in a geometric picture. Afterwards, 

Cluster analysis will be used to show the clustering structures of different 

cars within the market thus helping the car companies to know how their 

car brand is rated among other similar competing car brands and who their 

rival in the same cluster are. 

 

1.3 Review of previous studies:   

I-Cluster Analysis: 
 

Cluster analysis is used in many disciplines, including biology, 

geology, anthropology, and marketing (Tryon, 1939). Before cluster 

analysis can be performed, a set of objects must be arranged in a data 

matrix. In most cases, the columns of the matrix represent the individual 

objects, while the rows represent a set of determined attributes that each 
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object may or may not possess. For example, an archaeologist may be 

interested in determining the evolutionary link of an unspecified set of 

bones. The archaeologist can identify several physical, chemical, and other 

attributes of these bones and arrange them as rows on a matrix. Then, the 

bones and other bones that have already been classified are laid out as 

columns. Cluster analysis uses a variety of mathematical methods to 

determine which classified bones are the most similar to the unknown 

bones, based on the determined attributes (Kaufman & Rousseauw, 

1990). 

        

         Romesburg (1984) outlined three research goals that cluster analysis 

can answer. The first goal is to create a question to be tested later. Creating 

a question is relatively simple, as the researcher can simply run a cluster 

analysis on a data matrix and observe what clusters form together. Though 

it would be irresponsible to draw any conclusions without a hypothesis, it 

is appropriate to further investigate any interesting patterns that emerge in 

subsequent studies. The second goal is to create a hypothesis. The 

researcher already has a question framed when running the analysis, but no 

testable hypothesis. Any patterns that emerge may answer the question and 

open up the possibility of a hypothesis. Finally, cluster analysis can be used 

to test a hypothesis. Typically, previous studies that may or may not have 

already used cluster analysis have presented evidence of a clear, testable 

hypothesis. The hypothesis must be made a priori and any conclusions 

must be directly related to the hypothesis. Most of the literature on 

psychometric measures already has a firmly developed hypothesis. 

        

          Once a researcher has put together a data matrix, the researcher 

determines how to analyze the data by choosing a resemblance coefficient. 

There are several resemblance coefficients to choose from, but each 



 

 
 

Chapter One Introduction 

6 

coefficient is either a similarity or dissimilarity coefficient. This dichotomy 

simply expresses the direction of the data; when using a similarity 

coefficient; larger values indicate higher similarity between two objects 

while the opposite is true with a dissimilarity coefficient. In psychology 

literature indicates that the Euclidean distance coefficient is the most 

common distance measure in published studies (Clatworthy et al., 2005) 

which finds the least distance between two objects via Euclidean geometry. 

This coefficient can easily be visualized when only two attributes are 

compared across the objects. These two attributes are treated as coordinates 

on a two-dimensional plane, and the point on the plane represents an object. 

The Euclidean distance coefficient calculates the linear distance between 

objects by using the Pythagorean Theorem. Therefore, the farther two 

points are, the more dissimilar the represented objects are from each other. 

 

         In most matrices, objects are compared across more than two 

attributes. A three-attribute cluster analysis can be envisioned as a three-

dimensional space, but higher attribute analyses cannot be pictured as 

easily. Nevertheless, the principle remains the same: the Euclidean 

distance coefficient calculates the overall distance that two objects are from 

each other in a hypothetical space. These distances are placed on a new 

matrix called the resemblance matrix, with which researchers can 

determine the similarity between individual objects. However, how objects 

actually combine to form clusters is determined by a second technique 

called the clustering method (Thaler 2010). 

 

Like with distance coefficients, the researcher determines the 

optimal clustering method and there are many methods that he can select 

(Kaufman and Rousseauw, 1990). Clustering methods can be 

hierarchical or partitional in nature. Hierarchical methods are the preferred 
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form for most researchers, as they build dendograms, or trees, which are 

visual representations of the clusters. The majority of the previous studies 

used Ward’s minimum variance clustering method (Ward, 1963), which 

is also the second most used clustering method across all scientific fields 

(Romesburg, 1984). Like all hierarchical methods, Ward’s method is 

agglomerative, building clusters from individual objects and combining 

clusters based on their similarity to each other until the final cluster, which 

encompasses all the data, is formed. This final cluster can be visualized as 

the “trunk” of the tree, which in turn breaks into smaller and smaller 

branches, while the tips of the tree represent the original objects. Ward’s 

method calculates similarity by using a sum-of-squares calculation to see 

which two items exhibit the least variance when combined into a 

hypothetical “average.” All cluster combinations are compared at each 

level of the tree, and a new cluster is formed each time the smallest variance 

is found. This continues until all objects are formed into one unifying 

cluster. 

 

           Another hierarchical clustering method worth noting 

is the two-step clustering method, which has the advantage of 

automatically selecting the number of clusters and handling 

categorical as well as continuous variables (Bacher, et al, 2004). 

The two-step method clusters individual cases into small sub-

clusters, and then clusters these sub-clusters into the cluster 

solution. In large datasets with only continuous variables, such as 

the dataset in this study, the Euclidean distance coefficient is used. 

A survey on agglomerative hierarchical clustering algorithms was 

performed by Murtagh and Contreras (2011) who discussed 

their efficient implementations. They look at hierarchical self-

organizing maps, and mixture models.They described a recently 
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developed very efficient (linear time) hierarchical clustering 

algorithm, which can also be viewed as a hierarchical grid-based 

algorithm. They also touched on a number of application domains.    

 

           Once the dendogram is fully formed, researchers must determine 

where to “cut” the tree, or where the optimal cluster solution is found. The 

optimal cut is subjective, but typically a smaller cluster solution is 

preferred over a larger one. Romesburg (1984) recommends that the tree 

should be cut where the clusters are maximally related to other variables of 

interest. Therefore, cutting the tree in different ways may produce different 

results, and the one that fits the proposed hypothesis the best should be 

selected. 

 

           There may be some unforeseen complications that emerge from the 

data. Chaining is a term used to describe a cluster that repeatedly merges 

with individual objects; much like a black hole absorbs random pieces of 

debris (Anderson, 1973). Ideally we would want objects to clump into 

several smaller clusters and only merge together into the single cluster at 

the very end of the analysis. With chaining, it is more difficult to determine 

the similarity of objects as each object is added one at a time to a single, 

growing cluster. Another complication can emerge when the dendogram 

does not accurately represent the data matrix (Romesburg, 1984). This can 

occur because clustering methods mathematically calculate the similarity 

of objects using formulas that do not exactly match the actual similarity in 

Euclidean space (or, if another coefficient is used, whatever is determined 

to represent similarity among objects). Researchers typically avoid this 

problem by calculating the cophenetic correlation coefficient, a Pearson’s 

correlation between the actual data matrix and the proposed matrix formed 
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from the dendogram. Correlations that are greater than 0.80 indicate that 

the distortion between the matrix and the dendrogram is not severe. 

 

Sattath and Tversky (1977) criticized existing hierarchical 

clustering algorithms on the grounds that empirical rating data, which tend 

to be messy, often violated a basic assumption of such algorithms. This 

assumption is called the ultrametric inequality; Sattath and Tversky's 

description of its concise: given two disjoint clusters, all intra-cluster 

distances are smaller than all inter-cluster distances, and all the inter-

cluster distances are equal.  An additive tree algorithm is a method for 

generating a tree structure given a similarity or distance matrix that does 

not require the data to be constrained by the ultrametric inequality. As in 

other tree structures, leaf nodes of the tree correspond to stimuli and the 

distance (dissimilarity) between them is the length of the path joining them. 

Unlike other hierarchical schemes, however, additive trees perm it intra-

cluster distances to exceed inter cluster distances. As a result, additive trees 

typically give better fits to rating data than other, simpler, hierarchical 

clustering models. 

 

Additive clustering differs from both hierarchical and additive tree 

structures in that objects can belong to multiple groups simultaneously. For 

example, if subjects were to categorize the numbers 1 to 10, they might 

adopt a number of overlapping schemes: evens vs. odds, smaller (≤5) vs. 

larger, multiples of 3, powers of 2, primes vs. non-primes, and so forth. In 

any hierarchical or additive tree scheme, effectively only one of these 

features could be used to ascribe any object's location in the tree structure, 

creating a "winner-take-all" scenario. This sort of procedure goes directly 

against the view of similarity that Tversky (1977) argued for, where a total 
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judgment of similarity between any two objects is a 

comparison/summation across a range of different features. 

 

         The K-means as one of partitional clustering method was applied by 

Tarpey (2007) on functional data. He compared the differences in the 

clustering outcomes of the K-means method based on how the observed 

data were smoothed. In his study he applied the K-means method to the 

raw data, and then to three transformations of the raw data into curves 

including: B-spline basis, Fourier basis, and a power basis (using an L2 

metric). For each of these transformations, the estimated regression 

coefficients were clustered by the K-means algorithm. The functional data 

used were estimated Hamilton Depression responses from a clinical trial. 

 

Rehman and Mehdi (2013) set a comparison between 

density-based algorithms by implementing detailed study of 

density based algorithms (Density based spatial clustering of 

applications with noise (DBSCAN), Recursive density based 

clustering (RDBC).  

 

II-Multidimensional scaling: 
           

         Much of this brief history was found in Wish and Carroll (1982). 

Carroll and Arabie (1980) provide a valuable summary within a 

taxonomy framework and supply an extensive bibliography. 

Multidimensional scaling has its origin with a paper by Young and 

Householder (1938). This paper introduced a theorem which addressed 

the minimum number of dimensions needed to fit a set of distances to N 

points, and a method for building a space capturing the distances. Although 
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Richardson (1938) followed quickly with an application of this technique, 

little progress was made until the 1950's when the facility of computers 

made the large amount of required calculation feasible. In this period, 

Torgerson (1952, 1958) developed the techniques that embody classical 

multidimensional scaling. He showed the methods that have been used 

during this early period. The problem for researchers trying to apply MDS 

in actual practice was how to convert a distance rating to specific geometric 

information without knowing a priori the distance metric involved.   

 

The breakthrough to practical implementations came in a two-part 

paper by Shepard (1962) and two papers by Kruskal (1964a, 1964b). 

Shepard had the insight that the geometric configuration could be 

recovered without needing to know the specific distance metric by treating 

the perceived similarity between stimuli as reflecting some arbitrary 

monotonic function of an underlying distance metric, i.e., the subjects' 

estimated similarity 𝑆𝑆𝑖𝑖𝑖𝑖 between objects i and j was some function 𝑓𝑓of the 

true distance 𝐷𝐷𝑖𝑖𝑖𝑖  between them. The only requirement of the function was 

that it be monotonic (the value of the function always increases as the true 

distance increases); treating the estimated similarities as a rank-ordering, 

with some means for breaking ties, proved a simple way of generating such 

a monotonic function. Kruskal expanded on this notion by introducing the 

concept of stress, a measure of goodness-of-fit. With a means for 

computing the stress in a proposed configuration, an iterative computer 

program would be able to judge which of two possible configurations 

better fit the similarity data, and thus be able to converge on a numerical 

solution. KruskaL’s own experience led him to characterize a stress value 

of .10 as "fair," while a value of 0.05 was considered "good"; stress values 

above 0.10 were deemed unfavorable, and values above .20 labeled "poor" 

(Kruskal 1964a). 
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         Carroll and Chang (1970) introduced a metric model which 

incorporated individual differences among subjects in a MDS experiment. 

In addition to an object space, this model produces a subject space as well. 

The MDS program INDSCAL (Carroll 1981) is the computer 

implementation of Carroll and Chang's model. INDSCAL was later 

generalized into a family of multilinear MDS models called 

CANDECOMP (CANonical DECOMPosition of N-way tables) (Carroll, 

et al., 1980 and Carroll and Pruzansky 1984). Takane, et al., (1977) 

developed a nonmetric MDS model for individual differences which 

became the basis for the ALSCAL program (Young 1981). 

 

         Up to this point, MDS models and programs had all used a least 

squares criterion for determining how well the object space fit the raw data. 

Ramsay (1977) introduced a model which used a maximum likelihood 

criterion. The underlying distributional assumptions of the model allowed 

Ramsay (1978) to perform confirmatory MDS analyses. Ramsay (1981) 

implemented his model as the MDS program MULTISCALE. In this 

description of MULTISCALE, Ramsay outlined the use of diagnostic plots 

such as q-q plots for verifying the validity of the distributional assumptions 

and for detecting isolated wild departures from the distribution. 

          

           Parallel with these developments in MDS algorithms for deriving 

object spaces, research on interpreting the dimensions of the object space 

was being performed. Carroll (1980) presents a valuable summary of 

models for property (or preference) analysis. Tucker (1960) proposed a 

vector model in which the preference of objects is modeled by a vector 

through the object space. The vector model is a special case of the ideal 

point (or unfolding) model developed by Coombs (1950) (for the 
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unidimensional case) and by Bennett and Hays (1960) (for the 

multidimensional case). Several computer programs notably MDPREF 

(Chang and Carroll 1969) and PREFMAP (Chang and Carroll 1972) 

implemented the concepts of these models. 

 

          The use of procrustes statistics has attracted much interest as an area 

of research in comparing different object spaces. Sibson (1978, 1979) 

applied procrustes statistics to analyze the effects of small perturbations in 

distance on scaling applications. Gower (1975) presents a generalized 

technique for calculating a single procrustes statistic to compare m object 

spaces each containing the same N objects. 

 

       Recently, resampling techniques have been applied to MDS analyses 

to assess the stability of solutions. Wish and Carroll (1982) alluded to the 

use of the jackknife for these purposes. Heiser and Meulman (1983) used 

bootstrap techniques to compute confidence intervals for object space 

coordinates. Weinberg, et al., (1984) used the jackknife as a bootstrap 

technique to compute confidence intervals for object space coordinates. 

DeLeeuw and Meulman (1986) developed a specialized MDS jackknife 

to assess the stability and cross-validity of an object space solution. 

 

          A limited amount of research has explored diagnostic measures for 

MDS analyses. Pruzansky, et al., (1982) found two properties of 

proximity data which aided in identifying whether the data could be fit 

better by a spatial model or by a tree model. Proximity data with positive 

skewness and lesser elongation of triangles are better fit by spatial models 

(such as KYST object space solutions). Their study also supported the 

conclusions of an earlier study by Graef and Spence (1979) that small 

distances are less important in nonmetric MDS analyses than are large 
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distances. Graef and Spence generated proximities between 31 objects 

within a two-dimensional circle via random perturbation of the distances. 

They then deleted different thirds ? of the proximities according to 

proximity size (i.e., the largest third, the smallest third, and the middle 

third) and compared the recovered distances from the object spaces 

produced by the MDS program to the true distances between the objects on 

the circle. 

 

         With a practical algorithm available, an increasing number of 

researchers began to use MDS to explore similarity and categorization of 

data; a good survey of applications in various areas of investigation can be 

found in Tversky and Hutchinson's (1986) reanalysis paper. Problematic 

aspects of the method existed, however, and these would lead various 

researchers, notably Tversky, to question the appropriateness of MDS for 

various types of data. An entirely new method, cluster analysis, would 

result from examination of these problem areas, as well as a better 

understanding of the mathematics underlying both MDS and CA. 

 

         Hierarchical cluster analysis already existed as a concept; indeed, a 

basic paper by Johnson (1967), building on work by Ward (1963) as well 

as Shepard (1962) and Kruskal (1964a, 1964b), provided an alternate way 

to treat similarity within a few years of the first practical MDS algorithms. 

Hierarchical clustering and other types of clustering were now viewed as a 

way to deal with datasets that gave MDS methods problems. Two of the 

most severe problem areas were the presence of exemplars or prototypes 

in the dataset, and highly separable dimensions, an "apples and oranges" 

similarity situation. 

 



 

 
 

Chapter One Introduction 

15 

          Stress in an MDS configuration will be high (i.e., a poor goodness-

of-fit will occur) if one of the objects in the stimulus set being evaluated is 

considered to be an exemplar of a larger class, or considered a prototype. 

For example, in the set (fruit, cherry, banana, watermelon, apple, orange, 

kiwi], "fruit" will be almost certainly be considered more similar to all the 

other objects than any other pair to each other since it is a generic, 

prototypical example of the category to which all the other objects belong. 

The only way to handle the presence of an exemplar geometrically without 

a significant amount of computed stress is by having all the other items 

distributed across the surface of a circle/sphere/equivalent higher-

dimensional shape, while the exemplar sits at the center of the 

configuration. In general, this type of solution can deal with up to only N+2 

items in an N-dimensional space (e.g., in two dimensions have three 

objects at the vertices of a triangle with the exemplar at the center of gravity 

of the triangle), although specific larger sets of objects might work 

Tversky and Hutchinson (1986) analyzed conditions when exemplar 

presence would cause difficulties for geometric configurations, and 

reanalyzed many prior studies by means of a nearest neighbor approach. In 

contrast to a geometric configuration, a tree structure of similarity can deal 

easily with the presence of an exemplar by locating the exemplar at the root 

node of the tree, while all other objects locate at the end nodes of the 

branches. 

 

The other major problem area for traditional MDS, highly separable 

dimensions, is a situation where the different dimensions have little or 

nothing to do with each other. An example dating back to the great 

nineteenth-century psychologist William James is: the moon is like a ball 

because they are both round; the moon is also like a gas lantern because 

they both illuminate; but we do not think of a ball as being like a gas 
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lantern. Similarity in such cases can be thought of as a 

comparison/summation function across a range of independent or semi-

independent features. In fact, this view of similarity as a matching process 

across a collection of object features led Tversky (1977) to propose cluster 

analysis as an alternate approach to similarity measurement. Tversky and 

Gati (1982) also demonstrated that for highly separable dimensions, basic 

mathematical assumptions of geometric modeling were violated. In 

particular, the triangle inequality, which states that for any objects i, j, and 

k and the distances D between them 𝑑𝑑𝑖𝑖𝑖𝑖+ 𝑑𝑑𝑖𝑖𝑗𝑗 ≥ 𝑑𝑑𝑖𝑖𝑗𝑗, is violated, because 

the "distance" along one dimension has nothing to do with the "distance" 

along another for the triangle inequality to be valid, a single distance metric 

must operate for all dimensions. Thus, two complimentary approaches to 

the analysis of similarity were necessary depending on the type of objects 

under study; as Tversky and Hutchinson (1986) state: 

 

“Multidimensional scaling seems particularly appropriate for perceptual 

stimuli, such as colors and sounds that vary along a small number of 

continuous dimensions On the other hand, clustering representations seem 

particularly appropriate for conceptual stimuli, such as people or 

countries that appear to be characterized by a large number of discrete 

features” 

. 

There is a family of CA algorithms, but they all work in like fashion: 

given a similarity or distance matrix, some method is used to pick the pair 

of stimuli most like each other, group them into a single cluster, and derive 

a new reduced matrix. When the process is finished, the stimuli will be 

grouped into some sort of tree structure, where the distance between any 

pair of objects is related to the length of the path along the various branches 

separating them. 
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          Hebert et al (2006) introduced fuzzy dissimilarity data, the fuzzy 

multidimensional scaling and the distance models which dissimilarities are 

expressed as intervals or fuzzy numbers. In these models each object is 

then no longer represented by a point but by a crisp or a fuzzy region in the 

chosen space. Furthermore they proposed two algorithms and illustrated to 

determine a fuzzy region in the chosen space. 

 

 III-Use of CA and MDS in Conjunction: 
As noted above in the quote from Tversky and Hutchinson (1986), 

there are various conditions under which it is more appropriate to use either 

MDS or CA. Even when standard MDS works for a given situation, 

however, CA can aid the researcher in interpreting an otherwise obscure 

set of dimensions. Figure 1 and 2 shows how cluster analysis can assist a 

researcher in interpreting the dimensions of a geometric configuration from 

an MDS. In figure 1, a reanalysis by  mmm of letter similarity data 

collected by Kuennapas and Janson (1969), the vertical dimension of the 

geometric configuration has rounded letters at the bottom and non-rounded 

ones at the top, but the interpretation of the horizontal dimensional is not 

obvious at first glance. Using a cluster analysis of the data, shown on figure 

2, groupings of various sets of the letters become readily apparent. 
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Figure 1 

Representation of letter similarity (Kuennapas and Janson, 1969) 
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                                     Figure 2 

Representation of letter similarity (Kuennapas and Janson, 1969) 
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          On the other hand, there are some situations where CA gives very 

bad fits even when separable dimensions are at work. For example, if the 

underlying data structure is a grid, any type of CA will yield a very poor 

fit since one point must be considered privileged (the root node of the 

clustering tree) and distances between the objects must be computed along 

the branches of the imposed tree structure. Figure 3 gives an example: the 

circles show the true configuration of the stimuli, with lines and 

intermediate nodes (the black dots and circle) connecting them in a tree. It 

is obvious that any two circles adjacent along a row or column should be 

rated as equidistant, but when one can move between circles only by 

traversing the tree, widely disparate "distances" will be registered. In 

practice, the researcher must be careful and explore many possibilities it is 

almost always better to use both MDS and CA on the same input data as 

cross-checks on each other. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Poor Fit for a CA tree due to addition of privileged nodes. 
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1.4         The Outline of Research. 
This thesis is organized as follows:  

Chapter I : An introduction which represents a background on 

multidimensional scaling, cluster analysis and use of cluster analysis and 

multidimensional scaling in Conjunction, goals of our study and review 

studies. 

Chapter II: Measure of proximity which represents different patterns of 

proximity measures (similarity and dissimilarity). 

Chapter III: Multidimensional scaling which represents Technique of 

multidimensional scaling in terms of concepts and methods. 

 Chapter IV: Cluster analysis (concepts and methods). 

 Chapter V : Clustering multidimensional scales. 

Chapter VI: An application of cluster analysis and multidimensional 

scaling on some data obtained from Benha city car market 
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                  II. MEASURES OF PROXIMITY 

 

2.1     Introduction: 

         In data mining, particularly in cluster analysis and multidimensional 

scaling, similarity, dissimilarity, and distance measures play an important 

role to calculate the proximity between data objects. The similarity matrix 

is constructed from the proximity measure. According to Everitt (1980) 

 

          There are many different measures available in the literature to 

calculate the proximity between data objects. One of the reasons for this 

variety is that these measures differ on the data type of the objects present 

in a given dataset. For instance, it follows that the proximity measures that 

are suitable for numeric variables may not be suitable for nominal data, as 

the attribute values from these two data types are represented differently. 

Therefore, a different set of measures is required to handle binary or 

nominal data. Moreover, the measures also differ on the properties they 

exhibit. 

 

2.2    Similarity, Dissimilarity, and Distance measures: 

2.2.1   Similarity  

         Similarity(s) is a numerical measure that represents the similarity (i.e. 

how alike various features and attributes). A similarity measure is 

considered a metric if it produces a higher value as the dependency 

between corresponding values in the sequences increases. A metric 

similarity satisfies the following properties (Theodoridis and 

Koutroumba (2009). 

 

1. Limited Range: S(X,Y) ≤ 𝑆0 , for some arbitrarily large number 𝑆0 . 

2. Reflexivity: S(X,Y) = 𝑆0   if and only if X = Y. 
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3. Symmetry: S(X,Y) = S(Y,X). 

4. Triangle Inequality: S(X,Y)S(Y,Z) ≤ [S(X,Y) +S(Y,Z)]S(X,Z).  

𝑆0  is the largest similarity measure between all possible X and Y 

sequences. 

 

          This measure usually returns a non-negative value that falls in 

between 0 and 1. However, in some cases similarity may also range from -

1 to +1. The Pearson Coefficient Correlation and the Angular Separation, 

are two examples where the similarity may take a negative value. When 

the similarity takes a value zero (0), it means that there is no similarity 

between the objects and these objects are very different from one another. 

In contrast, the value (1) denotes complete similarity, emphasizing that the 

objects are identical and possess the same attribute values . 

              

2.2.2   Dissimilarity  

         The dissimilarity measure [Webb (2002)], [Han and Kamber 

(2006)] is also a numerical measure, which represents the discrepancy or 

the difference between a pair objects. If two objects are very similar then 

the dissimilarity measure will have a lower value, where as if the objects 

are very different from one another, this measure will return a higher 

numeric value. Therefore, the measure is reversely related to the similarity 

measure. As such, when the similarity between two objects is high, the 

dissimilarity will be low and vice versa. As with the similarity score, the 

dissimilarity value also fall into the interval [0,1], but it may also take 

values ranging from —1 to +1. 

             

2.2.3    Distance 

         The term distance, which is also commonly used as a synonym for 

the dissimilarity measure [Meila and Shi (2000)], computes the distance 
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between two data points in a multi-dimensional space. The distance 

measures always take a positive value between 0 and ∞. The distance 

measures also satisfy the following four properties [Kandil, A. (2011) and 

Larose (2000)]: 

 

1. d(x,y) = d(y,x), for all points x and y. For instance, the distance from 

point x to point y is same as the distance from point y to point x. 

2. d(x, y) = 0, if x = y. Distance is only 0 when both the coordinates are 

same. 

3. d(x, y) > 0, for all points x and y. The distance is always non-negative. 

4. d(x,y) < d(x,z) + d(z,y), for all points x, y and z. This is also known as 

the Triangle Inequality. This implies that introducing a third point may 

never shorten the distance between the two other points [Larose (200)]. 

 

2.2.4      The relation between proximity measures:  

 

          Similarity and distance are, in a sense, inversely related to one 

another. When the distance in between two objects is large (meaning that 

the objects are different from one another), the similarity will be low. 

Conversely, when the distance is low the similarity will be high. Since it is 

inversely related, a common way to transform a distance measure to a 

similarity measure is by using the equation 

𝑠𝑖𝑗 =
1

𝑑𝑖𝑗
.                                 (2.1) 

Where 

             i and j are two objects. 

  

One of the problems with this equation is that the similarity value will not 

always fall into the range [0,1]. 
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 For instance, if the distance between two objects is very small, such as 

𝑑𝑖𝑗=0.25, then the similarity value for these two objects will be  

                                   𝑠𝑖𝑗=
1

0.25
 = 4   

There are various other ways to transform a distance or dissimilarity 

measure to a similarity measure such that the values for similarity measure 

ranges from 0 to 1. 

If dissimilarity scores fall in between 0 and 1 then similarity is calculated 

using the following formula: 

              similarity = 1 — dissimilarity                         (2.2)                                   

         However, if the value for a distance measure is greater than 1, then 

there are different ways to transform a distance measure into a similarity 

measure. One such is the function given in Equation 2.2. This function is 

also known as the Gaussian function. [Han and Kamber (2006)] 

                    𝑠(𝑥, 𝑦) = exp (−
𝑑(𝑥,𝑦)2

2∗𝛳2
)                                 (2.3) 

Where 

1. s(x,y) = similarity between points x and y. 

2. d(x, y) = distance between points x and y. 

3. 𝛳 = a user specified scaling variable. Shi and Malik suggested that 

the value of 𝜎 is set to 10 to 20 percent of the total range of the values 

obtained from the distance function d(x, y).  

  

There are several other ways to convert a distance measure into a similarity 

measure, as stated below: 

                            

                    𝑠(𝑥, 𝑦) =   
1

1+𝑑(𝑥,𝑦)2
                                           (2.4) 

                    𝑠(𝑥, 𝑦) =   
1

1+𝑑(𝑥,𝑦)
                                             (2.5) 
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                   s(x, y) = l – d(x, y)               (d(x, y) ∈[0,1])        (2.6)  

 

 

2.3     Proximity Measures for Binary Variables: 

         Binary variables take only two values, such as: 0 (negative) and 1 

(positive), yes (positive) and no (negative), or agree and disagree. These 

variables are usually categorized into two types:  

1) Symmetric binary variables where both the positive and the negative 

values carry equal weight  

 2) Asymmetric binary variables where the positive and the negative values 

do not carry equal weight, and one (usually the positive value) carries more 

weight than the other. 

 Let x and y be two binary data points. Each proximity measure for binary 

data is represented by four variables (a, b, c, d): 

a = number of occurrences of 𝑥𝑖= 1 and 𝑦𝑖= 1 (positive matches), 

b = number of occurrences of 𝑥𝑖  = 0 and 𝑦𝑖= 1 (disagreement), 

c = number of occurrences of 𝑥𝑖  = 1 and 𝑦𝑖  = 0 (disagreement), 

d = number of occurrences of 𝑥𝑖= 0 and 𝑦𝑖= 0 (negative matches), 

and a + b + c + d =p (total number of attributes in x and y). 

 

          Therefore, numerous similarity coefficients were proposed by 

various researchers to calculate the proximities, which are also equally 

applicable to fields including data mining and statistics. A number of 

such coefficients give equal weight to the positive and negative values, 

whereas several coefficients ignore the negative matches. As such, for the 

same set of data, different coefficients may give different similarity 

values [Everitt (1980)].  

We use the sample dataset given in Table 2.1 to compute the coefficients.  
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Object ID Attribute 1 Attribute 2 Attribute 3 Attribute 4 

Object 1 

Object 2 

Object 3 

0 

1 

1 

1 

1 

0 

1 

1 

0 

1 

1 

0 

                          Table 2.1: Sample dataset for binary data type. 

 

2.3.1 Jaccard Coefficient: 

         The Jaccard coefficient does not consider the negative matches. In 

terms of the four variables defined above, the Jaccard similarity coefficient 

is defined by Equation 2.7. Recall that, a denotes the number of positive 

matches whereas, b and c denote the total number of disagreements. 

                     

 𝑠𝑖𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑎

𝑎+𝑏+𝑐
                       (2.7) 

                                            

𝑑𝑖𝑠𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑏+𝑐

𝑎+𝑏+𝑐
                          (2.8)    

 

 
The values range from 0 to 1. The maximum similarity is achieved when b 

= c = 0 and the minimum similarity is achieved when there are no positive 

matches (when a = 0).  

 
Example 2.3.1. The dissimilarity and the similarity between Object 1 and 

Object 2: 
 

𝑑𝑖𝑠1,2 =
1+0

3+1+0
=

1

4
= 0.25                          

 

                             

                                               
𝑠𝑖𝑚1,2 = 1 − 0.25 = 0.75                  
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The dissimilarity and the similarity between Object 1 and Object 3: 

 

𝑑𝑖𝑠1,3 =
1+3

0+1+3
=

4

4
= 1.0                          

 
                             

 𝑠𝑖𝑚1,3 = 1 − 1 = 0                  

 

2.3.2 Czekanowski Coefficient: 

            The Czekanowski similarity coefficient is also known as the Dice 

or Sorenson coefficient. The function is given in Equation 2.10. Recall that, 

a denotes the total number of positive matches. The total numbers of 

disagreements are denoted with the variables b and c. 

 

𝑠𝑖𝑚𝐶𝑧𝑒𝑘𝑎𝑛𝑜𝑤𝑠𝑘𝑖  =
2𝑎

2𝑎+𝑏+𝑐
                       (2.9) 

𝑑𝑖𝑠𝐶𝑧𝑒𝑘𝑎𝑛𝑜𝑤𝑠𝑘𝑖  =
𝑏+𝑐

2𝑎+𝑏+𝑐
                        (2.10) 

 

The coefficient is similar to the Jaccard coefficient. However, double 

weight is given to the variable a which denotes the total number of 

occurrences of the positive matches. By giving twice the weight to a, the 

function gives more emphasis to the positive matches. Variable d (when x 

= 0 and y = 0) is not present in this measure. 

 

Example 2.3.2. The dissimilarity and the similarity between Object 1 and 

Object 2: 

 

𝑑𝑖𝑠1,2 =
1 + 0

2 ∗ 3 + 1 + 0
=

1

7
= 0.1429 

                              𝑠𝑖𝑚1,2 = 1 − 0.1429 = 0.8571 
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The dissimilarity and the similarity between Object 1 and Object 3: 

 

𝑑𝑖𝑠1,3 =
1 + 3

2 ∗ 0 + 1 + 3
=

4

4
= 1.0 

 
                                                 𝑠𝑖𝑚1,3 = 1 − 1 = 0 

 

  

2.3.3 Sokal and Sneath Coefficient: 

           Sokal and Sneath proposed a similarity coefficient that is similar to 

the ones proposed by Jaccard and Czekanowski. This measure is defined 

as: 

 

    𝑠𝑖𝑚Sokal and Sneath  proposed =
𝑎

2
𝑎

2
+𝑏+𝑐

=
𝑎

𝑎+2(𝑏+𝑐)
                    (2.11)                        

                                               

𝑑𝑖𝑠Sokal and Sneath proposed =
𝑏+𝑐

𝑎

2
+𝑏+𝑐

                                  (2.12)    

 
 

          However, in contrast to the Czekanowski coefficient which gives 

double weight to the positive matches (a), the Sokal and Sneath coefficient 

gives double weight to the disagreements in the denominator. The 

disagreements are represented by the variables b and c as denoted earlier. 

Thus, the Sokal and Sneath coefficient gives twice the weight on the 

combined disagreements denoted by b + c. By doing so, the coefficient 

actually gives slightly less weight to the positive matches compared to the 

Jaccard and Czekanowski coefficients 

 

Example 2.3.3. The dissimilarity and the similarity between Object 1 and 

Object 2 

𝑑𝑖𝑠1,2 =
1 + 0

1/2 ∗ 3 + 1 + 0
=

2

5
= 0.4 
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                                         𝑠𝑖𝑚1,2 = 1 − 0.4 = 0.6 

 

The dissimilarity and the similarity between Object 1 and Object 3:  
 

𝑑𝑖𝑠1,3 =
1 + 3

1/2 ∗ 0 + 1 + 3
=

4

4
= 1.0 

 

 
                                          𝑠𝑖𝑚1,3 = 1 − 1 = 0 

 

We suggest a new measurement which can represent all previous measures. 
 

𝑆𝑖𝑚𝑚−𝑔𝑒𝑛𝑒𝑟𝑎𝑙 =
𝑎

𝑎+𝑚 (𝑏+𝑐)
   , 𝑚 ≥ 0                (2.13). 

 

     𝑑𝑖𝑠𝑚−𝑔𝑒𝑛𝑒𝑟𝑎𝑙 =
𝑏+𝑐

𝑚𝑎 +𝑏+𝑐
      , 𝑚 ≥ 0                            (2.14). 

 
2.3.4 Simple Matching Coefficient: 

         The Simple matching coefficient [Webb (2002)], also known as the 

Hamming distance, denotes the proportion of variables for which two 

variables have the same value [Webb (2002)]. As mentioned earlier, the 

variables a and d denote the total number of positive and negative matches, 

respectively. The variables b and c denote the total number of 

disagreement. 

          

         𝑠𝑖𝑚𝑆𝑖𝑚𝑝𝑙𝑒 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
                  (2.15). 

        𝑑𝑖𝑠𝑆𝑖𝑚𝑝𝑙𝑒 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑏+𝑐

𝑎+𝑏+𝑐+𝑑
                 (2.16). 

 

 
         The Simple Matching Coefficient considers both, the positive 

matches (a) and the negative matches (d). Moreover, it gives equal weight 

to the positive and negative matches. 
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Example 2.3.4. The dissimilarity and the similarity between Object 1 and 

Object 2: 

       𝑑𝑖𝑠1,2 =
1 +0

3+1+0+0
     =

1

4
   =0.25                       

 

𝑠𝑖𝑚1,2 = 1 − 0.25 = 0.75 

 

The dissimilarity and the similarity between Object 1 and Object 3: 

 

𝑑𝑖𝑠1,3 =
1+3

0+1+3+0
=

4

4
= 1.0     

 

𝑠𝑖𝑚1,3 = 1 − 1 = 0 

 

 

2.3.5 Russell and Rao Coefficient: 

           The Russell and Rao similarity coefficient is sometimes known as 

the Positive matching coefficient [Webb (2002)]. The similarity function 

is defined in Equation 2.15. 

 

𝑠𝑖𝑚 Russell and Rao =
𝑎

𝑎+𝑏+𝑐 +𝑑
                                       (2.17). 

  

𝑑𝑖𝑠𝑆 Russell and Rao =
𝑏+𝑐+𝑑

𝑎+𝑏+𝑐+𝑑
                                        (2.18). 

 

We suggest to write Russell and Rao coefficient in another formula 

 𝑠𝑖𝑚 Russell  and Rao =  
𝑎

𝑎𝑔𝑟𝑒𝑚𝑒𝑛𝑡  𝑣𝑎𝑙𝑢𝑒𝑠+𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑚𝑒𝑛𝑡  𝑣𝑎𝑙𝑢𝑒𝑠
   (2.19). 

  

 𝑑𝑖𝑠 Russell and Rao = 
𝑑+𝑐+𝑑

𝑎𝑔𝑟𝑒𝑚𝑒𝑛𝑡  𝑣𝑎𝑙𝑢𝑒𝑠 +𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑚𝑒𝑛𝑡  𝑣𝑎𝑙𝑢𝑒𝑠
      (2.20).   

                                   
 

           The Russell and Rao coefficient gives the proportion of the positive 

matches against the total number of variables (including the negative 
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matches). The coefficient is also sensitive to the meaning of positive and 

negative values. If the values are interchanged, then it will represent the 

proportion of the negative matches. The Russell and Rao coefficient 

achieves the maximum similarity when b = c = d = 0 (when there are only 

positive matches present) and scores the minimum when     a = 0 (when 

there are no positive matches). 

 

Example 2.3.5. The dissimilarity and the similarity between Object 1 and 

Object 2: 

𝑑𝑖𝑠1,2 =
1+0+0

3+1+0+0
     = 

1

4
   =0.25                       

 

𝑠𝑖𝑚1,2 = 1 − 0.25 = 0.75 

 
The dissimilarity and the similarity between Object 1 and Object 3: 

 

𝑑𝑖𝑠1,3 =
1+3+0

0+1+3+0
=

4

4
= 1.0     

 

𝑠𝑖𝑚1,3 = 1 − 1 = 0 

 

2.3.6 Rogers and Tanimoto Coefficient: 

        The coefficient proposed by Rogers and Tanimoto is defined in 

Equation 2.17. 

𝑠𝑖𝑚 Rogers and Tanimoto =
(𝑎+𝑑)

2
(𝑎+𝑑)

2
+𝑏+𝑐

=  
𝑎+𝑑

𝑎+𝑑+2(𝑏+𝑐)
                     (2.21). 

 

𝑑𝑖𝑠 Rogers and Tanimoto =
𝑏+𝑐

(𝑎+𝑑)

2
+𝑏+𝑐

                                             (2.22). 

 

        The Rogers and Tanimoto coefficient is similar to the Simple 

Matching Coefficient. Where in matching Coefficient, the similarity 

coefficient considers both the positive and negative matches in the 
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equation and gives equal weight to them. However, in contrast to the 

Simple Matching Coefficient, the Rogers and Tanimoto coefficient gives 

double weight to the variables that represent the disagreements in the 

denominator (i.e. the variable b and c) [Sokal, R., and Sneath, P. (1963)]. 

We suggest anew coefficient from Rogers and Tanimoto coefficient 

defined in Equation 2.17. 

𝑑𝑖𝑠 m general =
𝑚(𝑏 + 𝑐)

(𝑎 + 𝑏) + 𝑚(𝑏 + 𝑐)
   , 𝑚 > 0               (2.23).  

 

        𝑠𝑖𝑚 m general =
𝑎 + 𝑑

𝑎 + 𝑑 + 𝑚(𝑏 + 𝑐)
       , 𝑚 > 0              (2.24).       

                                  =
𝑎𝑔𝑟𝑒𝑚𝑒𝑛𝑡  𝑣𝑎𝑙𝑢𝑒𝑠

𝑎𝑔𝑟𝑒𝑚𝑒𝑛𝑡  𝑣𝑎𝑙𝑢𝑒𝑠 +𝑚(𝑎𝑔𝑟𝑒𝑚𝑒𝑛𝑡  𝑣𝑎𝑙𝑢𝑒𝑠 )
     

 

 

Example 2.3.6. The dissimilarity and the similarity between Object 1 and 

Object 2: 

𝑑𝑖𝑠1,2 =
1 + 0

(3+0)

2
+ 1 + 0

=
2

5
= 0.4 

  
    𝑠𝑖𝑚1,2 = 1 − 40. = 0.6 

 

The dissimilarity and the similarity between Object 1 and Object 3: 

  

            𝑑𝑖𝑠1,3 =
1 + 3

(0+0)

2
+ 1 + 3

=
4

4
= 1.0 

  
𝑠𝑖𝑚1,3 = 1 − 1 = 0 
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2.4 Proximity Measures for Numeric Variables: 

        There exist several distance measures for numeric or real-valued data. 

We present our discussion based on the measures presented in [Webb 

(2002)], [Pedrycz (2005)], [Teknomo ( 2007)] and [Kandil, A. (2011)] . 

For the purpose of clarification, we provide an example that shows the 

calculations for each of these distance measures. We use the sample dataset 

given in Table 2.2, which contains three data objects, and each of the 

objects is represented with four features. 

               Table 2.2: Sample dataset for numeric data type.  

 

 

2.4.1 Euclidean Distance: 

        The Euclidean distance is one of the most widely used distance 

measures in the area of cluster analysis and multidimensional scaling 

[Everitt (1980)]. The distance, in this case, is the straight-line distance 

between a given pair of data points. The distance is calculated as the 

summation of the differences between the coordinates of the data points 

𝑥𝑖  and 𝑥𝑗 . The function is denoted as Equation 2.18. 

𝑑𝑥𝑖𝑥𝑗
= √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘 )2𝑛

𝑘=1                                   (2.25). 

 
Example 2.5.1. The distance between Object 1 and Object 2 is calculated 

as: 

𝑑1,2 = √(10 − 11)2 + (5 − 6)2 + (8 − 9)2 + (2 − 1)2 =2 

The distance between Object 1 and Object 3 is calculated as: 

𝑑1,3 = √(10 − 1)2 + (5 − 20)2 + (8 − 0)2 + (2 − 8)2 =20.1494 

Object ID          Attribute 1          Attribute 2          Attribute 3          Attribute 4 

Object 1 10 5 8 2 
Object 2 11 6 9 1 

Object 3 1 20 0 8 
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3.4.2 Manhattan Distance: 

        The Manhattan distance is also commonly known as the city-block 

distance. The Manhattan distance measure would travel from one point to 

another as if a grid-like path is followed. It is the summation of absolute 

differences between the coordinates of two data points (𝑥𝑖  and 𝑥𝑗.). 

 

 𝑑𝑥𝑖𝑥𝑗
= ∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘 |𝑛

𝑘=1                                     (2.26). 

 

Example 2.4.2. The distance between Object 1 and Object 2 is calculated 

as: 

𝑑1,2 = |10 − 11|+|5 − 6| + |8 − 9| + |2 − 1| =4 

The distance between Object 1 and Object 3 is calculated as: 

𝑑1,3 = |10 − 1|+|5 − 20| + |8 − 0| + |2 − 8| =38 

 

2.4.3 Minkowski Distance: 

        The Minkowski distance is defined in Equation 2.27 

𝑑𝑥𝑖𝑥𝑗
= (∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘 |

𝜆𝑛
𝑘=1 )

1

λ
                                  (2.27).            

 
In Equation 2.20, 𝜆 may take any value greater than 0. Depending on the 

value of 𝜆, the Minkowski distance may take several different forms. For 

instance, when  𝜆 = 1, the Minkowski distance is similar to the Manhattan 

distance, whereas when 𝜆 = 2, the Minkowski distance is similar to the 

Euclidean distance [Kandil, A. (2011)]. A large value of 𝜆 indicates larger 

difference. However, a larger value of 𝜆 also indicates that the largest scale 

would dominate the total distance. 

Example 2.4.3. The distance between Object 1 and Object 2 is calculated 

as (when 𝜆 = 3):    

𝑑1,2 = √|10 − 11|3 + |5 − 6|3 + |8 − 9|3 + |2 − 1|33
 =1.587 
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The distance between Object 1 and Object 3 is calculated as (when 

𝜆 = 3): 

𝑑1,3 = √|10 − 1|3 + |5 − 20|3 + |8 − 0|3 + |2 − 8|33
 =16.9061 

 
 

2.4.4 Chebyshev Distance: 

        The Chebyshev distance is a special case of the Minkowski distance 

with 𝜆 =∞. In this case, the distance is measured as the distance between 

the coordinates of two data points where the absolute distance between the 

points in any single dimension is maximized. 

 

𝑑𝑥𝑖𝑥𝑗
= 𝑚𝑎𝑥𝑘|𝑥𝑖𝑘 − 𝑥𝑗𝑘 |                                               (2.28). 

 

        

Example 2.4.4. The distance between Object 1 and Object 2 is calculated 

as: 

𝑑1,2 = 𝑚𝑎𝑥 (|10 − 11|, |5 − 6|, |8 − 9|, |2 − 1|) = max (1, 1, 1, 1) = 1 

The distance between Object 1 and Object 3 is calculated as: 
 

𝑑1,3 = 𝑚𝑎𝑥 (|10 − 1|, |5 − 20|, |8 − 0|, |2 − 8|) = max (9, 15, 8, 6) = 15 

 

2.4.5 Canberra Distance:                                                                                       

          The Canberra distance is the summation of the series of fractional 

differences between coordinates of two data points (𝑥𝑖  and 𝑥𝑗 ). The 

Canberra distance is defined as Equation 2.29. 

𝑑𝑥𝑖𝑥𝑗
= ∑

|𝑥𝑖𝑘−𝑥𝑗𝑘|

|𝑥𝑖𝑘+𝑥𝑗𝑘|
𝑛
𝑘=1                                                   (2.29). 
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The numerator of this equation signifies the difference between the objects, 

whereas the denominator normalizes the difference. Thus, the distance for 

each dimension may at most be 1.  

Example 2.4.5. The distance between Object 1 and Object 2 is calculated  

as: 

𝑑1,2 =
|10−11|+|5−6|+|8−9|+|2−1| 

|10+11|+|5+6|+|8+9|+|2+1| 
 =0.5307 

 

The distance between Object 1 and Object 3 is calculated as: 

 

𝑑1,3 =
|10−1|+|5−20|+|8−0|+|2−8| 

|10+1|+|5+20|+|8+0|+|2+8| 
 =3.0182 

 
 

2.4.6 Mahalanobis Distance: 

        The Mahalanobis distance [Wikipedia (2008)], considers the 

correlation between variables. The Mahalanobis distance measure uses the 

covariance matrix to measure the variance and the correlation between the 

objects. Let �⃗�and �⃗�be two vectors and 𝐶−1be the inverse covariance 

matrix. Then the Mahalanobis distance is calculated as: 

d (�⃗�, �⃗�)= √(�⃗� − �⃗�)𝑐−1(�⃗� − �⃗�)𝑇                            (2.30). 

The main difference between the distance measures discussed so far and 

the Mahalanobis distance measure is that it considers the correlation 

between the variables. [Berkhin ( 2002)], [Xu and Wunsch (2005)], 

[Kandil, A. (2011)]. 

         However, one of the drawbacks of using the Mahalanobis distance 

measure is its high computational cost, which is due to the calculation 

required to construct the inverse covariance matrix. The Mahalanobis 

distance may not be suitable for high-dimensional datasets as covariance 

estimation may be inaccurate [Ghosh (2003)]. 
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Example 2.4.6. The covariance matrix (𝐶−1) for the data in Table 2.2 is 

(as calculated by MATLAB): 

 

|

30.3333
−45.6667

−45.6667
70.3333

27.1667 −20.8333
−40.8333 31.1667

27.1667 −40.8333 24.3333 −18.6667
20.8333 31.1667 −18.6667 14.3333

| 

The distance between Object 1 and Object 2 is calculated as :  

(�⃗�- �⃗�)= [−1 −1        −1 1] 

𝑑1,2 =

√[−1 −1        −1 1] ∗   𝐶−1  ∗  [−1 −1        −1 1])𝑇 =1.9828 

 

 

 

The distance between Object 1 and Object 3 is calculated as: 

(�⃗�- �⃗�)= [9 −15        8 −6] 

𝑑1,3 =

√[9 −15        8 −6]  ∗   𝐶−1  ∗  [9 −15        8 −6])𝑇      =3.8609 

 

 

 

2.4.7 Angular Distance: 

        The Angular Separation or Cosine Distance [Teknomo ( 2007)], 

measures the angular distance between the coordinates of two data points 

(𝑥𝑖  and𝑥𝑗 ). Even though, this measure is called the Angular distance, it is a 

similarity measure rather than a distance measure. It represents the cosine 

angle between the unit vectors in the direction of the two pattern vectors 

[Webb (2002)] and thus the value lies between -1 and +1 as of the range of 

cosine angle. Though the angles are measured, it is meant to give the linear 

distance between the data points. A higher value of this function denotes 
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that the data objects are very similar to one another. The similarity and 

distance measure between object 𝑥𝑖  and 𝑥𝑗  is given below: 

 

𝑠𝑥𝑖𝑥𝑗
=  

∑ 𝑥𝑖𝑘 .
𝑛
𝑘=1  𝑥𝑗𝑘

(∑ 𝑥𝑖𝑘
2𝑛

𝑘=1 .∑ 𝑥𝑗𝑘
2𝑛

𝑘=1 )
1
2

                                       (2.31). 

 

𝑑𝑥𝑖𝑥𝑗
=1 −

∑ 𝑥𝑖𝑘 .
𝑛
𝑘=1  𝑥𝑗𝑘

(∑ 𝑥𝑖𝑘
2𝑛

𝑘=1 .∑ 𝑥𝑗𝑘
2𝑛

𝑘=1 )
1
2

                                 (2.32). 

 

Type equation here. 

        The Angular distance is also scale invariant, and thus, the different 

units do not affect the result. The Angular distance considers the relative 

distance between the objects from a fixed point (the origin). 

 

Example 2.4.7. The distance between Object 1 and Object 2 is calculated 

as: 

𝑑1,2 = 1 −
(10 ∗ 11) + (5 ∗ 6) + (8 ∗ 9) + (2 ∗ 1)

√(102 + 52 + 82 + 22) ∗ (112 + 62 + 92 + 12)
= 0.0036 

The distance between Object 1 and Object 3 is calculated as: 

𝑑1,3 = 1 −
(10 ∗ 1) + (5 ∗ 20) + (8 ∗ 0) + (2 ∗ 8)

√(102 + 52 + 82 + 22) ∗ (12 + 202 + 02 + 82)
= 0.5794 

 
2.4.8 Pearson Correlation Distance: 

        The Pearson correlation coefficient [Teknomo ( 2007)] measures 

similarity between data points. The values of this function ranges from -1 

to +1. Since this measurement shows whether two data points are linearly 

related or not, a value of 1 shows that the points are lying on the same line 

and are positively correlated. A value of -1 indicates that the points are 

negatively correlated, whereas 0 means there is no linear correlation 

between the data points. 
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𝑠𝑖𝑗=
∑ (𝑥𝑖𝑘−𝑥𝑖 ̅̅ ̅̅    ) .

𝑛
𝑘=1 ( 𝑥𝑗𝑘−𝑥𝑗 ̅̅ ̅̅  )   

(∑ (𝑥𝑖𝑘−𝑥𝑖 ̅̅ ̅̅ )2 .(∑ (𝑥𝑗𝑘−𝑥𝑗 ̅̅ ̅̅ )2𝑛
𝑘=1

𝑛
𝑘=1 )

1
2

                        (2.33). 

Where 

𝑥𝑖 ̅̅̅ = 
 1

𝑛
∑ 𝑥𝑖𝑘.

𝑛
𝑘=1   ,      𝑥𝑗 ̅̅̅ = 

 1

𝑛
∑ 𝑥𝑗𝑘 .

𝑛
𝑘=1    

The similarity function may be changed to correlation distance measure by 

subtracting from 1. 

 

𝑑𝑖𝑗=1- 
∑ (𝑥𝑖𝑘−𝑥𝑖 ̅̅ ̅̅    ) .

𝑛
𝑘=1 ( 𝑥𝑗𝑘−𝑥𝑗 ̅̅ ̅̅  )   

(∑ (𝑥𝑖𝑘−𝑥𝑖 ̅̅ ̅̅ )2 .(∑ (𝑥𝑗𝑘−𝑥𝑗 ̅̅ ̅̅ )2𝑛
𝑘=1

𝑛
𝑘=1 )

1
2

                     (2.33). 

 
        The Pearson coefficient correlation is used in the areas of microarray 

analysis and the document cluster analysis, amongst others. Since this 

distance measure considers the correlation between the objects, the outliers 

may affect the end results. 

  
Example 2.4.8. 

  

 𝑥1 ̅̅̅̅  =
10+5+8+2

4
 =6.25   ,   𝑥2 ̅̅̅̅  =

11+5+9+1

4
 = 6.75      ,   𝑥3 ̅̅̅̅  =

1+20+0+8

4
 = 7.25       

The distance between Object 1 and Object 2 is calculated as: 

𝑑1,2 =1- 

(10−6.25)∗(11−6.75)+   (5−6.25)∗(6−6.75)+(8−6.25)∗(9−6.75)+  (2 −6.25)∗(1−6.75)    

√[(10−6.25)2 +(5−6.25)2 +(8−6.25)2+ (2−6.25)2]∗[(11−6.75)2+(6−6.75)2+(9−6.75)2 +(1−6.75)2 ]
 

         =1- 
45.2498

5.6680
 = .0092 

The distance between Object 1 and Object 3 is calculated as: 

𝑑1,3 = 1- 

(10−6.25)∗(1−7.25)+   (5−6.25)∗(20−7.25)+(8−6.25)∗(0−7.25)+  (2−6.25)∗(8−7.25)    

√[(10−6.25)2 +(5−6.25)2 +(8−6.25)2+ (2−6.25)2]∗[(1−7.25)2+(20−7.25)2+(0−7.25)2+(8−7.25)2]
 

         =1- 
−55.25

96.7586
= 1.57 
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2.5 Proximity Measures for Mixed Variables: 

        In the previous section, the discussion mostly focused on datasets of 

a particular variable type (e.g. binary). Nevertheless, in practical 

applications, it is possible to have more than one type of attribute in the 

same dataset. For instance, a dataset may have numeric and binary 

attributes to describe the objects [Kandil, A. (2011)]. In such cases, the 

conventional proximity measures for these two data types may not work 

well, as they are suitable to deal with one kind of variable at a time. 

Therefore, some similarity measures are proposed that incorporate 

information from various data types into a single similarity coefficient. The 

coefficients present in literature to calculate the similarity for mixed data 

type are, the Gower's General Dissimilarity Coefficient [Han& Kamber 

(2006)] and the Laflin's General Coefficient [Laflin (1998)], [Kaufman& 

Rousseeuw (2005)]. 

 

2.5.1 Gower's General Dissimilarity Coefficient: 

        The dissimilarity measure was introduced by Gower (1971). The 

function is defined as follows: 

             𝑑𝑖𝑗 =
∑ 𝛿𝑖𝑗𝑢𝑑𝑖𝑗𝑢𝑢

∑ 𝛿𝑖𝑗𝑢𝑢
                                                (3.34). 

 

 Where 

i.  𝑖 , 𝑗  are objects 

ii. 𝑢 is the variables 

iii. ∑ 𝛿𝑖𝑗𝑢  𝑢 is the number of variables 

iv. The indicator 𝛿𝑖𝑗𝑈  = {0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1   𝑖𝑓  𝑖 and𝑗 are nonmising for variabel 𝑢 

 

v. 𝑑𝑖𝑗𝑢 is the distance between object i and j for a variable u 
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 𝑑𝑖𝑗𝑢 is calculated using different distance measures that already exist for 

various variables types. For example: 

• If u is Numeric 

𝑑𝑖𝑗𝑢 =
|𝑥𝑖𝑢 − 𝑥𝑗𝑢|

𝑚𝑎𝑥ℎ𝑥𝑖𝑢 −𝑚𝑖𝑛ℎ 𝑥𝑖𝑢 
  

where  

h runs over all the non-missing objects of variable u.  

• If u is binary 

𝑑𝑖𝑗𝑢 = {
1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0         𝑖𝑓 𝑥𝑖𝑢=𝑥𝑗𝑢 
 

 

• If u is Ordinal  

1.    First compute the rank  𝑟𝑖𝑢  for object i assuming that the attribute 

u has 𝑀𝑢 ordered states and 𝑟𝑖𝑢 ∈   1, … , 𝑀𝑢 

2.    Replace 𝑥𝑖𝑢  by its corresponding rank.  

3. Normalize 𝑟𝑖𝑢   by using the following formula: 

        𝑍𝑖𝑢 =
𝑟𝑖𝑢  −1

𝑀𝑢  −1
               ,   𝑍𝑖𝑢 ∈ [0.0,1.0]. 

4. Treat 𝑍𝑖𝑢  as a numeric variable and a distance metric for the 

numeric variable is used to calculate the distance between the 

objects. 

 

• If u is Ratio-scaled 

 (According to Han and Kamber (2006)], "a ratio-scaled variable makes 

a positive measurement on a nonlinear scale, such as an exponential 

scale."), then the distance between its objects may be calculated in one of 

two ways.  

Firstly by performing a logarithmic transformation and treating this 

transformed data as numeric values. 
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Secondly, by treating u as continuous ordinal data and calculating the 

distance as mentioned above. 

  

 Example 2.5.1. For this example, we used a dataset (Table 2.3) similar to 

the one given in [Han& Kamber (2006)]. 

                         Table 2.3: Sample dataset for mixed data type. 

 

To calculate the similarity between Object 1 and Object 2; we proceed as 

follows: 

Attribute 1 (Numeric): 

 max = 12 and min = 3 

𝑑1,2(Attribute 1)=
|12−9|

|12−3|
= 0.3333 

Attribute 2 (Numeric): 

 max = 12 and min = 4 

𝑑1,2(Attribute2)=
|10−12|

|12−4|
=0.25 

Attribute 3 (Nominal): 

𝑑1,2(Attribute3) = 0  

Attribute 4 (Nominal): 

𝑑1,2(Attribute4) = 0  

Attribute 5 (Ordinal): 

 Rank: Fair = 1, Good = 2 and Excellent = 3 and 𝑀𝑢  = 3 

The normalized values for Attribute 5 will be: 

Attribute 1    Attribute 2   Attribute 3     Attribute 4   Attribute 5   Attribute 6 

(Numeric)     (Numeric)     (Nominal)     (Nominal)    (Ordinal)       (Ordinal) 

Object 1          12                     10             A  A Good First 

Object 2  9                      12               A                    A Excellent First 

Object 3  3 4                  B C Fair Third 
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Object 1 =
2−1

3−1
= 0.5      

 object2 =
3−1

3−1
 =1       

 object3 =
1−1

3−1
 =0      

𝑑1,2(Attribute5)=
|.05−1|

|1−0|
=0.5 

Attribute 6 (Ordinal): 

 Rank: Third =1, Second = 2 and First= 3 and 𝑀𝑢  = 3 

The normalized values for Attribute 6 will be: 

Object 1 =
3−1

3−1
= 1      

 object2 =
3−1

3−1
 =1       

 object3 =
1−1

3−1
 =0      

𝑑1,2(Attribute 6)=
|1−1|

|1−0|
=0 

 

The total dissimilarity between Object 1 and Object 2 are thus calculated 

as, 

𝑑1,2

(1 ∗0.3333)+(1∗0.25)+(1 ∗0)+(1∗1)+(1∗0.5)+(1∗0)

1 +1+1+1+1+1
=

1.0833

6
= 0.18055 

Next, the similarity may be derived by using Equation 2.5 as follows: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦1,2= 1- 0.18055= 0.81945 

To calculate the similarity between Object 1 and Object 3; we proceed as 

follows: 

Attribute 1 (Numeric): 

 max = 12 and min = 3 

𝑑1,3(Attribute 1)=
|12−3|

|12−3|
= 1 

Attribute 2 (Numeric): 

 max = 12 and min = 4 

𝑑1,3(Attribute2)=
|10−4|

|12−4|
=

6

8
=0.75 
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Attribute 3 (Nominal): 

𝑑1,3(Attribute3) = 1  

Attribute 4 (Nominal): 

𝑑1,3(Attribute4) = 1  

Attribute 5 (Ordinal): 

 Rank: Fair = 1, Good = 2 and Excellent = 3 and 𝑀𝑢  = 3 

The normalized values for Attribute 5 will be: 

Object 1 =
2−1

3−1
= 0.5      

 object2 =
3−1

3−1
 =1       

 object3 =
1−1

3−1
 =0      

𝑑1,3(Attribut5)=
|.05−0|

|1−0|
=0.5 

Attribute 6 (Ordinal): 

 Rank: Third =1, Second = 2 and First= 3 and 𝑀𝑢  = 3 

The normalized values for Attribute 6 will be: 

Object 1 =
3−1

3−1
= 1      

 object2 =
3−1

3−1
 =1       

 object3 =
1−1

3−1
 =0      

𝑑1,3(Attribute2)=
|1−0|

|1−0|
=1 

 

The total dissimilarity between Object 1 and Object 3 are thus calculated 

as, 

𝑑1,3

(1 ∗1)+(1∗0.75)+(1∗1)+(1∗1)+(1∗0.5)+(1∗1)

1+1+1+1+1+1
=

5.25

6
= 0.8750 

Next, the similarity may be derived by using Equation 2.5 as follows: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦1,3= 1- 0.8750= 0.1250 
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2.5.2 Laflin's General Coefficient: 

        The Laflin's coefficient is measured as follows. Let there be 𝑁1 Binary 

attributes and 𝑁2  Numeric attributes in a dataset. Let 𝑆1 and 𝑆2  be the 

similarity measures calculated for the Binary and the Numeric data 

respectively using some existing similarity measures (as discussed in 

Section 2.3 and Section 2.4 respectively). Then Laflin's coefficient [Laflin 

(1998)] is calculated as follows: 

              𝑆(𝑖,𝑗)= 
𝑁1 .𝑠1+𝑁2 .𝑠2

𝑁1 +𝑁2
                                    (2.35). 

This function may be extended to include additional data types in a similar 

manner. For example, if each instance in a dataset contains four types of 

variables (i.e. Binary, Numeric, Ordinal and Nominal) then 𝑁1, 𝑁2 , 𝑁3and 

𝑁4  will represent the total number of attributes for these four types of 

variables, respectively. Next, we calculate the similarity between each pair 

of objects using existing similarity measures, as discussed  earlier, for each 

of these set of attributes separately. Let 𝑆1, 𝑆2 , 𝑆3and 𝑆4  

be the similarity measure associated with the set of attributes 𝑁1, 𝑁2 , 𝑁3and 

𝑁4 , respectively. All these similarity values should be scaled so that they 

fall in between 0 and 1. The general similarity coefficient for this mixed 

set of attributes is calculated as: 

𝑆(𝑖,𝑗)= 
𝑁1 .𝑠1+𝑁2 .𝑠2+𝑁3 .𝑠3+𝑁4 .𝑠4

𝑁1 +𝑁2 +𝑁3 +𝑁4
                           (2.36). 

This equation ensures that each attribute makes an equal contribution to the 

measure of similarity between two objects i and j [Laflin (1998)]. 

Example 2.5.2. For the dataset given in Table 2.3, Laflin's coefficient is 

calculated as follows. 

There are three different variable types in this dataset each type containing 

2 variables. Thus,𝑁1 = 𝑁2 = 𝑁3 = 2.  

To calculate the distance between nominal variables we use the formula 

given in [Han& Kamber (2006)]: 
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𝑑(𝑖,𝑗) =
𝑝−𝑚

𝑝
                                           (2.31) 

Where  

p is the total number of variables and  

m is the number of variables for which 𝑖 and 𝑗have the same value. 

For numeric variables, the Euclidean distance measure as defined in 

Equation 2.18 is used and for all the cases distance measure is converted 

into a similarity measure by using Equation 2.4. 

The similarity between Object 1 and Object 2 is calculated as follows. 

Numeric variables: 

𝑑1 = √(12 − 9)2 + (10 − 12)2  = 3.4641 

𝑠1 =
1

1 + 𝑑1

=
1

1 + 3.4641
= 0.2240 

 

Nominal variables: P = 2 (total number of variables of type nominal) 

𝑑2=
2−2

2
 = 0 

𝑠2 =
1

1 + 𝑑2

=
1

1 + 0
= 1 

 

Ordinal variables: 

Attribute 5 (Ordinal): 

 Rank: Fair = 1, Good = 2 and Excellent = 3 and 𝑀𝑢  = 3 

The normalized values for Attribute 5 will be: 

Object 1 =
2−1

3−1
= 0.5      

 object2 =
3−1

3−1
 =1       

 object3 =
1−1

3−1
 =0      

Attribute 6 (Ordinal): 
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 Rank: Third =1, Second = 2 and First= 3 and 𝑀𝑢  = 3 

The normalized values for Attribute 6 will be: 

Object 1 =
3−1

3−1
= 1      

 object2 =
3−1

3−1
 =1       

 object3 =
1−1

3−1
 =0      

 

 

𝑑3= √(0.5 − 1)2 + (1 − 1)2 = 0.5 

 

𝑠3 =
1

1 + 𝑑3

=
1

1 + 0.5
= 0.6667 

When substituting the values of 𝑆1, 𝑆2and 𝑆3in Equation 2.30, we obtain: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑥
1,2

=
(2 ∗ 0.2240) + (2 ∗ 1) + (2 ∗ 0.667)

2 + 2 + 2
= 0.6302 

To calculate the similarity between Object 1 and Object 3, we proceed as 

follows. 

Numeric variables: 

𝑑1 = √(12 − 3)2 + (10 − 4)2 = 10.8167 

 

𝑠1 =
1

1 + 𝑑1

=
1

1 + 10.8167
= 0.0846 

Nominal variables: 

𝑑2=
2−2

2
 = 1 

𝑠2 =
1

1 + 𝑑2

=
1

1 + 1
= 0.5 

Ordinal variables: 
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𝑑3= √(0.5 − 0)2 + (1 − 0)2 = 1.118 

𝑠3 =
1

1 + 𝑑3

=
1

1 + 1.118
= 0.4721 

 

When substituting the values of 𝑆1, 𝑆2and 𝑆3in Equation 2.30, we obtain: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑥
1,3

=
(2 ∗ 0.0846) + (2 ∗ 0.5) + (2 ∗ 0.4721)

2 + 2 + 2
= 0.352 
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III. MULTIDIMENSIONAL SCALING 

 

3.1 Introduction: 

        Multidimensional scaling (MDS) is a set of methods for discovering 

hidden structures in proximity (similarity or dissimilarity) measures 

between pairs of objects (Borg and Groenen 2005). Its primary objective 

is to display multivariate data in a lower dimensional space (usually 

Euclidean). The mapping roughly preserves the most important metric 

relationships of the original data and inherently clusters the data. 

       The MDS attempts to estimate the coordinates for each object in a 

lower dimensional space such that the distance for each pair matches the 

original dissimilarity measure as closely as possible. For example, MDS 

can be used to construct a 2-dimensional map based on distances between 

different locations. The estimated configuration of the objects and the 

dimensionality are two important issues for MDS. One main application of 

MDS is visualization (Borg and Groenen 2005), where we can represent 

a complex set of similarities or dissimilarities in a graphical map that is 

easier to see. Another application is exploration, where we can explore the 

main dimensions or clusters underlying the dissimilarities. MDS has its 

roots in the social and behavioral sciences. It has been widely used in many 

fields including the mapping of computer usage, the dimension reduction 

of marketing segmentation, the layout of sensor networks, and recently the 

construction of antigenic maps (Borg and Groenen 2005, Garten, Davis, 

Russell and Smith 2009).   
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3.2 What is multidimensional scaling?  

  In many situations, we have data on the interrelationships between a set 

of objects. These interrelationships might be, for example: 

• Distances or the travel times between cities 

• Words shared between members of a group of languages  

• Frequencies with which libraries lend items to each other 

• Frequencies with which journals cite each other 

• Similarities between shades of colors 

• Correlation between adjectives used to describe people. 

In each of the cases listed above, the data take the form of a matrix D, 

whose components d𝑖𝑗 represent some measure of the similarity or 

dissimilarity between object i and object j. Each case is an example of a 

general and common situation. It would be useful to produce a mapping of 

the objects.  

Multidimensional Scaling (MDS) Multidimensional scaling (MDS) [ 

Borg and Groenen (2005), Kruskal and Wish (1978), Torgerson 

(1952)] is a general term that refers to techniques for constructing a map 

of generally high-dimensional data in to a target dimension(typically a low 

dimension)with respect to the given pairwise proximity information. 

Mostly, MDS is used to visualize given high dimensional data or abstract 

data by generating a configuration of the given data which utilizes 

Euclidean low-dimensional space, i.e. two-dimension or three-dimension. 

 

Generally, proximity information, which is represented as an n ×n 

dissimilarity matrix (∆= [δ𝑖𝑗] ), where n is the number of points (objects) 

and δ𝑖𝑗 is the dissimilarity between point i and j, is given for the MDS 

problem, and the dissimilarity matrix (∆) should agree with the following 

constraints: 



 

 

 

Chapter three Multidimensional scaling 

54 

(1) symmetricity  (δ𝑖𝑗 = δ𝑗𝑖) 

(2) nonnegativity (δ𝑖𝑗≥ 0) 

(3) zero diagonal elements(δ𝑖𝑖 = 0). 

The objective of the MDS technique is to construct a configuration 

of a given high-dimensional data into low-dimensional Euclidean space, 

where each distance between a pair of points in the configuration is 

approximated to the corresponding dissimilarity value as much as possible.  

The output of MDS algorithms could be represented as an  𝑛 × 𝑚 

configuration matrix X, whose rows represent each data point 𝑥𝑖  (i = 1, 

...,n) in m-dimensional space. It is quite straight forward to compute the 

Euclidean distance between 𝑥𝑖  and 𝑥𝑗  in the configuration matrix X, i.e. 

𝑑𝑖𝑗 =‖𝑥𝑖 − 𝑥𝑗  ‖, and we are able to evaluate how well the given points are 

configured in the m-dimensional space by using the suggested objective 

functions of MDS, called STRESS[Kruskal (1964)]or 

SSTRESS[Takane et al. (1977)].which are defining by the following 

definition:   

  STRESS difinition σ (x) = ∑ 𝑤𝑖𝑗𝑖<𝑗≤𝑛 (𝑑𝑖𝑗(𝑥)− δ𝑖𝑗)
2                      (3.1) 

 SSTRESS difinition𝜎2(x) = ∑ 𝑤𝑖𝑗𝑖<𝑗≤𝑁 [(𝑑𝑖𝑗(𝑥))2 − (δ𝑖𝑗)
2]

2
           (3.2) 

where1 ≤ i < j ≤ N and 𝑤𝑖𝑗 is a weight value, so 1 ≥ 𝑤𝑖𝑗  ≥ 0. 

As shown in the STRESS and SSTRESS functions, the MDS problems 

could be considered to be nonlinear optimization problem, which 

minimizes the STRESS or the SSTRESS function in the process of 

configuring an L-dimensional mapping of the high-dimensional data. 

 

3.3 Multidimensional scaling methods:  

Multidimensional scaling techniques can provide metric or non-

metric solutions for the definition and interpretation of the object space. 
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Metric multidimensional scaling can be classical MDS (principal 

coordinates analysis) or least squares scaling. 

 

In metric scaling, the object space distances must match as closely 

as possible the proximities of the proximity matrix; in metric property 

analysis, the vector or ideal point model must fit the degrees of the attribute 

for each object as closely as possible.  

If δ𝑖𝑗 satisfies the triangle inequality (δ𝑖𝑗 < δ𝑖𝑘 +δ𝑘𝑗), the Euclidean 

distances d𝑖𝑗 between these coordinates match or nearly match the original 

dissimilarities. This is the metric MDS (Gordon, 1999). 

 

Non-metric scaling is less restrictive than metric scaling. Instead of 

exactly matching the proximities, the object space distances must preserve 

only the ordering of the proximities; that is, if the proximity between 

objects i and j is greater than that between objects k and l, then the distance 

between objects 𝑖 and j must be greater than the distance between objects 

k and l in the object space. Similarly, in non-metric property analysis, the 

vector or ideal point model must fit only the ordering of the degrees of the 

attribute; that is, if the attribute degree for object i is greater than that of 

object j , the property model of the attribute attempts only to preserve this 

ordering. 

If δ𝑖𝑗 is an unknown monotonic increasing function δ𝑖𝑗= 𝑓(d𝑖𝑗), Where 

d𝑖𝑗 is the Euclidean distance between objects 𝑖and 𝑗. δ𝑖𝑗 is The rank order 

of Euclidean distances between objects i and j in the new configuration 

match the original rank order of dissimilarities δ𝑖𝑗, no matter δ𝑖𝑗satisfies 

the triangle inequality or not. This is the nonmetric MDS (Gordon, 1999). 
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 Metric least squares scaling and the nonmetric MDS method find a 

suitable configuration of points by minimizing a certain loss function. 

Classical scaling uses spectral decomposition on a doubly centered matrix 

of dissimilarities to find a lower dimensional display space (Gower and 

Hand, 1996). 

The decision to use metric or non-metric MDS depends on the nature 

of the proximity and attributes data. If the data represent quantitative 

evaluations, then metric analysis is preferred. If the data consists of 

rankings (which do not have absolute quantitative value), non-metric 

analysis must be used. If metric analysis does not provide meaningful 

solutions, non-metric analysis is often applied on the chance that a more 

easily interpreted solution may be obtained. Usually, though, there is little 

difference between metric and non-metric solutions to the same proximity 

matrix. Some MDS programs provide statistical significance tests which 

are meaningful only for metric analysis (Gower and Hand, 1996). 

 

3.3.1 Metric multidimensional scaling: 

The purpose of the metric MDS is to find a new configuration (or 

coordinates) probably in a low dimensional space, such that the Euclidean 

distance of any pair of the new coordinates closely approximates the 

prescribed value. For example, how can we draw a map of Egypt if we only 

know the distances between all pairs of Egyptian cities?. 

To complete the metric MDS, a principal coordinates analysis is 

employed first to find a new configuration from the given dissimilarity 

matrix. Then, a least squares scaling is applied afterwards to minimize the 

disparities between the original data's dissimilarities and the new 

configuration's dissimilarities. 
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3.3.1.1 Principal coordinates analysis (classical MDS):  

Consider the following problem: looking at a map showing a number 

of cities, one is interested in the distances between them. These distances 

are easily obtained by measuring them using a ruler. Apart from that, a 

mathematical solution is available: knowing the coordinates x and y, the 

Euclidean distance between two cities i and j is defined by 

 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 

 

Now consider the inverse problem: having only the distances is it 

possible to obtain the map? Classical MDS, which was first introduced by 

Torgerson (1952), addresses this problem. It assumes the distances to be 

Euclidean. Euclidean distances are usually the first choice for an MDS 

space. There exist, however, a number of non-Euclidean distance 

measures, which are limited to very specific research questions (Borg & 

Groenen, 1997). In many applications of MDS the data are not distances 

as measured from a map, but rather proximity data. When applying 

classical MDS to proximities it is assumed that the proximities behave like 

real measured distances. This might hold e. g. for data that are derived from 

correlation matrices, but rarely for direct dissimilarity ratings. The 

advantage of classical MDS is that it provides an analytical solution, 

requiring no iterative procedures. 
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Procedure for metric MDS (developed by Torgerson) 

        The classical scaling process of finding the configuration of points in 

the lower dimensional space for a set of dissimilarities 𝛿𝑖𝑗  will be 

described in this section. 

Suppose there are 𝑛 objects with dissimilarities 𝑑𝑖𝑗 measured between all 

pairs of objects. 

 Construct the n×n matrix A =𝑎𝑖𝑗 =−
1

2
𝛿𝑖𝑗

2
 

Construct the n×n matrix B =𝑏𝑖𝑗 , with elements  

𝑏𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖. − 𝑎.𝑗 + 𝑎.., 

Where 

 

(i)             𝑎𝑖. =
1

𝑛
∑ 𝑎𝑖𝑗

𝑛
𝑗=1 , 

(ii)             𝑎𝑗. =
1

𝑛
∑ 𝑎𝑖𝑗

𝑛
𝑖=1 , 

(iii) 𝑎.. =
1

𝑛2
∑ ∑ 𝑎𝑖𝑗

𝑛
𝑗=1 .𝑛

𝑖=1  

The matrix of squared Euclidean distances of the given coordinates ∆2(X) 

or simply∆2  can be expressed by a simple matrix equation with respect to 

the coordinate matrix(X), as shown: 

                         ∆2= 𝑐 1𝑡 + 1 𝑐𝑡 − 2𝑋𝑋𝑡  

                              = 𝑐 1𝑡 + 1 𝑐𝑡 − 2𝐵 

   Where 

(i)       c is the diagonal elements of XXt, 

(ii)       1 = (1,1,… ,1)T  a column vector of n ones, 

(iii) 1t is transpose of 1, 

(iv)  ct is transpose of  c,  

(v)        Xt is transpose of  X, 

(vi) B= XXt. 
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The centering (𝑛 × 𝑛) matrix H can be defined as   

H=𝑰𝑛 −
1

𝑛
1 1𝑡 

Where 

 I is the identity matrix, which translates a matrix to a column centered 

matrix by multiplying them. By multiplying the left and the right sides by 

the centering matrix H, a process called the double centering operation, 

we can introduce the following equations: 

𝐻∆2𝐻 = 𝐻(𝑐1𝑡 + 1𝑐𝑡 − 2𝑋𝑋𝑡)𝐻 

=  𝐻𝑐1𝑡𝐻+ 𝐻1𝑐𝑡𝐻 − 𝐻2𝐵𝐻 
= 𝐻𝑐0𝑡 + 0𝑐𝑡𝐻 − 2𝐻𝐵𝐻 

= −2𝐻𝐵𝐻 

= −2𝐵 
 

Since the centering of a vector of ones turns out to be a vector of zeros 

(1𝑡𝐻 = H1 = 0), the first two terms are eliminated. Without a loss of 

generality, we can assume that the coordinate matrix(X) is a column 

centered matrix. Then, the result of the double centering operation on the 

B matrix is equal to B itself, since X is a column centered matrix. 

Therefore, we can define the relation between B and 𝐷2as follow: 

𝐵 = −
1

2
𝐻∆2𝐻 

B=HAH 

Where  

      𝑨 = −
1

2
∆2 

The configuration of points can be found by expressing B in terms of its 

spectral decomposition (Gower and Hand, 1996) as 

B=VΛ𝑉𝑇, 

 

Where  
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Λ= diag(λ1, λ2 ,…, λ𝑛), the diagonal matrix of eigenvalues λ𝑖  of B   

λ1 ≥ λ2 ≥ … λ𝑛. 

The matrix of corresponding eigenvalues is V= [𝑉1, 𝑉2,…, 𝑉𝑛] where the 

eigenvectors are normalized such that 𝑉𝑖
𝑇
 𝑉𝑖  =1 for all i=1,2,…,n.  

The configurations of the points in r dimensional display space can be 

represented by the coordinated matrix X:  𝑛 × 𝑟 given by  

X=𝑽𝑟𝚲𝑟

1
2⁄ , 

Where 

 The columns of matrix 𝑽𝑟 : 𝑛 × 𝑟, consists of the first r eigenvectors of B 

that correspond to the r largest eigenvalues of B,  

 The matrix 𝚲𝑟

1
2⁄  = diag (λ1

1
2⁄ , λ2

1
2⁄ ,…, λ𝑟

1
2⁄ ). 

 The coordinate matrix X will be used to display the points which 

represent the objects. It must be remembered that the arbitrary sign of the 

eigenvectors 𝑽𝑖  leads to invariance of the configurations with respect to 

reflection in the origin. The display space will not necessarily be 

Euclidean.  

Cox and Cox (2001) points out that if B is positive semi-definite of rank 

r, then a configuration in r dimensional Euclidean space can be found, so 

that the associated distances between the points 𝛿𝑖𝑗 are such that             

                              𝛿𝑖𝑗 = 𝑑𝑖𝑗 for all i, j. 

 

How many dimensions should be used in the display space? 

           It is easily shown that B has at least one zero eigenvalue, since 

                                B𝟏=HA𝐇ˊ𝟏=0  

Where 

            0 represents a vector of n zeroes. 
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A configuration of points in any r = n-1 dimensional Euclidean space can 

therefore always be found. The configuration obtained could be rotated to 

its principal axes in the principal component sense (Cox and Cox, 2001) . 

The principle axes are orthogonal to each other. Only the first  

𝑟(𝑟 ≤ 𝑛 − 1)  principal axes are chosen for representing the objects, as 

this will explain the maximum variation in r dimensions. It turns out that 

X already has the points referred to their principal axes, since 

𝑿𝑿𝑇 = (𝑽𝑟𝚲𝑟

1
2⁄ )(𝑽𝑟𝚲𝑟

1
2⁄ )𝑡               

 =𝚲𝑟

1
2⁄ 𝑽𝑟

𝑇𝑽𝑟𝚲𝑟

1
2⁄ = 𝚲, 

Where 

            𝚲 is a diagonal matrix.  

The distances between the points in the full 𝑛 − 1 dimensional Euclidean 

space are given by 

𝛿𝑖𝑗
2
  =∑ 𝜆𝑠(𝑥𝑖𝑠 − 𝑥𝑗𝑠)

2𝑛−1
𝑠=1  ,        

 

And hence relatively small eigenvalues contribute far less to the squared 

distance 𝛿𝑖𝑗
2
  . If only r eigenvalues of B are retained as being 

significantly large, then r dimensional Euclidean space spanned by the 

first r eigenvectors of B can be used to represent the objects. 

   Definition 3.1.  a goodness of fit measure 

         The Eigen decomposition is variance-maximizing. That is, each 

successive dimension (i.e., eigenvector) “explains” the maximum amount 

of variance remaining in the data, after taking any previous dimensions into 

account. 

         The eigenvalues measure the variance explained by each dimension, 

and the sum of the eigenvalues is equal to the variance of the entries in B. 

       The proportion of variance accounted for by the m dimensions in the 
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MDS solution is given by the sum of the first r eigenvalues, divided by the 

sum of all eigenvalues (there will usually be n nonzero eigenvalues):                                               

 

Metric MDS Fit = 
∑ 𝜆𝑠

𝑟
𝑠=1

∑ 𝜆𝑠
𝑛−1
𝑠=1

 

 

Cox and Cox (2000) suggest a measure when B is not positive semi-

definite: 

Metric MDS Fit =
∑ 𝜆𝑠

𝑟
𝑠=1

∑ |𝜆𝑠|
𝑛−1
𝑠=1

  

Choice of r can then be assessed with this measure, but for practical 

purpose, r will usually be chosen to be 2 or 3. 

 

Basic steps in a classical MDS algorithm are: 

1. Construct the n×n matrix A =𝑎𝑖𝑗 =−
1

2
𝛿𝑖𝑗

2
 

2.  Construct the n×n matrix B=HAH 

Where  

      H is n×n the centering matrix 

 H=𝑰𝑛 −
1

𝑛
1 1𝑇  

 

3. Extract the n largest positive eigenvalues of 𝜆1 …𝜆𝑛 of the matrix B and 

the corresponding n eigenvectors𝑒1 …𝑒𝑛 . 

4.  m-dimensional spatial configuration of the n objects is derived from 

the coordinate matrix X=𝑽𝑟𝚲𝑟

1
2⁄ Where the columns of matrix 𝑽𝑟 with 

size n× 𝑟 ,consists of the first r eigenvectors of B that correspond to the r 

largest eigenvalues of B, and the matrix  

 𝚲𝑟

1
2⁄  = diag(λ1

1
2⁄ , λ2

1
2⁄ ,…, λ𝑟

1
2⁄ ). 
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Example 3.3.1.1:  

In order to illustrate classical MDS, assume that we have measured the 

distances between A, B, C, and D on a map. Therefore, the proximity 

matrix (showing the distances in millimeters) might look like 

  

A B C D 

A      0      93        82        133 

B      93      0         52         60 

C      82     52          0          111 

D     133    60       111          0 

 

 

The matrix of squared proximities is 

 

     [𝐀]𝑖𝑗=   [𝑑𝑖𝑗]
2 = [

0 8649
8649 0
6724 2704

6724 17689
2704 3600

0 12321
17689 3600 12321 0

] 

Since there are n = 4 objects, the matrix H is calculated by 

H=𝑰𝑛 −
1

𝑛
1 1𝑇 

 

 

H=[

1 0
0 1
0 0

0 0
0 0
1 0

0 0 0 1

]-0.25× [

1 1
1 1
1 1

1 1
1 1
1 1

1 1 1 1

] 
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   =  [

0: 75 −0.25
−0.25 0: 75

−0.25 −0.25

−0.25 −0.25
−0.25 −0.25
0: 75 −0.25

−0.25 −0.25 −0.25 0: 75

] 

B = −
1

2
H𝐀𝐇 = [

5035.0625 −1553.0625

−1553.0625 507.8125

258.9375 5.3125

258.9375 −3740.9375

5.3125 1039.9375

2206.8125 −2471.0625
−3740.9375 1039.9375 −2471.0625 5172.062

] 

  

The eigenvalues of B 

𝜆1=  9724.168 

 𝜆2=  3160.986 

𝜆3=   -0.001 

𝜆4=  36.596 

For a two-dimensional representation of the four points, the first two 

largest eigenvalues and the corresponding eigenvectors of B have to be 

extracted 

 

     𝜆1=9724:168,                𝜆2=3160:986,                 

    𝑒1 = [

−0: 637

0: 187
−0: 253

0: 704

],             𝑒2 = [

−0: 586

0: 214
0: 706

0: 334

] 

 

Finally the coordinates of the points (up to rotations and reflections) are 

obtained by multiplying eigenvalues and -vectors 

 

𝑋 = [

−0.637

0.187

−0.586

0.214
−0.253

0.704

0.706

−0.334

] [√
9724.168 0

0 √3160.986
]=[

−62.831 

18.403

−32.97448

12.02697
−24.960 

69.388

39.71091

−18.76340

] 
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MDS map
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Figure 3.1: Classical MDS representation of the four points 

 

 

3.3.1.2Metric least square scaling: 

          Metric least square scaling is a metric MDS method that find 

configuration 𝑿:𝑛 × 𝑟 by matching 𝛿𝑖𝑗  to 𝑑𝑖𝑗 by minimizing a certain loss 

function (Cox and cox 2001).  

 

where 

𝛿𝑖𝑗  is the distance between points i and j in this m- multidimensional space 

𝑿:𝑛 × 𝑟 

𝑑𝑖𝑗 is the Euclidian distance between points i and j 

. A tow dimensional space (m=2) is usually used. 

 

C 

A 

B 

D 

Dimensional 1 

l1111 

Dimensional 2 
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Loss function for Metric MDS  

Various loss functions have been suggested in the past. Minimizing 

different loss function produce different optimal configuration   𝑿: 𝑛 × 𝑟. 

Borg and Groenen (2005) used a general loss function, which will be 

referred to as Raw Stress: 

                   

                     Raw Stress= ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖<𝑗                         (3-3) 

where: 

(i) 𝑑𝑖𝑗:  is the Euclidean distance between points i and j in the                 

graphical display, 

(ii)  𝛿𝑖𝑗 :is the dissimilarity between objects i and j, 

(iii) 𝑤𝑖𝑗: are weights. Which can be specified to emphasize different 

pairs. For instance, if there are missing data, we may set 

 
                 The weights are usually chosen as  

𝑤𝑖𝑗 = 0 if 𝛿𝑖𝑗 is missing 

𝑤𝑖𝑗 = 1 if𝛿𝑖𝑗is known 

 

Other values of 𝑤𝑖𝑗 are also allowed and different choices of 𝑤𝑖𝑗 lead to 

different loss functions (Borg and Groenen, 2005). 

       More generally, let 

                                   𝑤𝑖𝑗 = 𝑑𝑞
𝑖𝑗 . 

Different choices of q can be used to emphasize the representation of small 

or large dissimilarities. Large negative values of q may lead to a better 

representation of small dissimilarities, but not large dissimilarities.  

 Conversely, large positive values of q lead to a better representation of 

large dissimilarities, but not small dissimilarities. For a relative 

presentation of both small and large dissimilarities, choose q=−2. If the 
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dissimilarities have some clustering, then choosing a large value of q may 

reveal a clearer clustering structure (Borg and Groenen, 2005). 

 

 

Normalized Stress valus 

Normalized Stress should be used to avoid scale dependency, 

where  

 

       Normalized Stress =
∑ 𝑤𝑖𝑗(𝛿𝑖𝑗−𝑑𝑖𝑗)

2
𝑖<𝑗   

∑ 𝑤𝑖𝑗𝑑𝑖𝑗
2

𝑖<𝑗
                              (3-4) 

 

  Normalized Stress values in (3-4) depend on many factors (Borg and 

Groenen, 2005) wich is follows  : 

(i) The higher n, representing the number of points, the higher the 

normalized in general.  

(ii) The higher r, the dimensionality of display space, the lower the 

normalized Stress values.  

(iii) The larger the squared errors (𝛿𝑖𝑗 − 𝑑𝑖𝑗), the higher the normalized 

Stress value  

 

Loss functions, such as normalized Stress in (3-4), are indices that assess 

the mismatch between the dissimilarities and corresponding distances. 

 

 The residual plot and bubble plot 

The residual plot and bubble plot can be used to describe this 

mismatch between the dissimilarities and corresponding distances. 

The residual plot 

 The residual plot is a scatter diagram of the distances and the 

dissimilarities. A bisector is draw from the lower left corner to the upper 
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right corner, and the dissimilarities are drawn on this bisector. The size of 

dissimilarities can therefore be noted immediately. The corresponding 

distances, that should match the original dissimilarities as well as possible, 

are also draw in this residual plot. The vertical distance between the 

dissimilarities and the corresponding distance is a measure of the 

corresponding error 𝑒𝑖𝑗  = (𝛿𝑖𝑗 − 𝑑𝑖𝑗). The error gives an indication of the 

size of mismatch between of the dissimilarities and the corresponding 

distances. Large error will cause a higher Normalized Stress value in (3-4). 

The residual plot gives an indication of which dissimilarities are better 

represented in the metric MDS display, but the residual plot does not give 

an indication of how well the original objects are represented by points in 

the display.  

The bubble plot  

The bubble plot can be used to assess the fit of each point. The bubble plot 

uses the Stress per point measure, which is defined by Borg and Groenen 

(2005) as follows: 

Stress per point is the average of the squared errors between the current 

object and all other objects. 

The bubble plot still uses the same configuration of points as the metric 

MDS plot to display the objects. The only different is that the bubble plot 

uses bubbles to represent the objects, where bubbles with a larger radius 

indicate points with better fit. The viewer can therefore immediately see 

which objects see better represented in the display. 

 

 In practice, a two-dimensional display is mostly used to display the final 

configuration X: 𝑛 × 𝑟 with r = 2. It is also possible to display the final 

configuration X: 𝑛 × 𝑟 in a three-dimensional graph, with r=3. A three-

dimensional display will have a lower final Normalized Stress (3-4) and 

Row Stress (3-3) value than a two-dimensional display. The normalized 
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Stress (3-4) value in a two-dimensional display can be assessed by 

considering the upper and lower bounds of The Normalized Stress (3-4) 

value. The Normalized Stress value in (3-4) has the following lower and 

upper bounds in a two-dimensional display: [0 , 0.4352] which were 

derived by De Leeuw and Stoop (1984) Stress by assuming that the points 

lie equally spaced on a circle. Then, Stress is smaller than 

[12cot2(𝜋2𝑛)/(𝑛2 −  𝑛)] 1/2  with the limit [1 −  8/𝜋2]1/2 = .4352 

     (Borg and Groenen 2005). 

 

 Local Minima 

MDS algorithms usually end up in a local minimum. Various methods can 

be used to minimize Normalized Stress (3-4) or Raw Stress (3-3). The aim 

of these methods is to find an optimal configuration X:𝑛 × 𝑟  of points, 

from which distances 𝑑𝑖𝑗  can be calculated. The optimal configuration will 

be the configuration that produces distances that best match the 

dissimilarities 𝛿𝑖𝑗  , in the sense that a minimum stress value is reached. 

These methods usually operate in an iterative manner by changing the 

configuration of points in each step, until either a minimum stress value or 

a specified maximum number of iterations is reached. These minimizing 

methods will usually require an initial configuration of points. It is 

common practice to use the configuration produced by classical scaling as 

the initial configuration (Borg and Groenen 2005). Random initial 

configurations, where points are randomly produced using a uniform 

distribution, can also be used.  

The method of dimension reduction repeats the MDS analysis, starting 

from a high dimensionality (say, 10) and then reducing the 

dimensionality of the solution space stepwise (down to 2, say). The local 

minimum configuration of the higher-dimensional analysis is used as a 
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start configuration for the MDS analysis in one dimension lower by 

dropping the dimension that accounts for the least variance (i.e., the last 

principal component). Proceeding in this manner, one hopes that the low-

dimensional solution is a global minimum multiple random starts, or 

multistart, consists of running the MDS analysis from many (say, 100) 

different random starting configurations and choosing the one with the 

lowest Stress. Using multistart and making some mild assumptions, an 

estimate for the expected total number of local minima can be given.  

Then, the total expected number of local minima 𝑛𝑡 is 

 

𝑛𝑡 =
𝑛𝑚(𝑛𝑠 − 1)

𝑛𝑠 − 𝑛𝑚 − 2
 

𝑛𝑡 is  the total expected number of local minima. 

𝑛𝑠 is the number of multistart start configurations. 

 𝑛𝑚 is the number of different local minima obtained. 

 

If 𝑛𝑠 is approximately equal to 𝑛𝑡, then we may assume that all local 

minima are found. The one with the lowest Stress is the candidate global 

minimum.  

 

 

The SMACOF algorithm for metric MDS 

The SMACOF algorithm used for metric MDS methods operates in an 

iterative manner by changing the configuration of points in each step of the 

algorithm.  

Borg and Groenen (2005) suggest using Normalized Stress (3-2) rather 

than Raw Stress (3-1) as loss functions, because using the latter may lead 

to degenerate solutions.  
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These degenerate solutions are configurations that were obtained by 

making the loss function very small, irrespective of the relationship 

between distance and the data. 

 The SMACOF algorithm ensures that the Normalized Stress value in (3-

2) reaches a local minimum, but the local minimum may not be a global 

minimum.  

The steepest descent methods can also not guarantee that the local 

minimum found is indeed the global minimum. Borg & Groenen (2005, 

p.276) point out that local in MDS are not necessarily bad. 

 A final configuration with a slightly worse fit is acceptable if it has a 

clearer interpretation than a configuration with a better fit. The problem of 

whether the local minimum is indeed the global minimum can be overcome 

in several ways.  

One possibility is to use multiple starting configurations where the whole 

SMACOF algorithm is repeated for each starting configuration and a 

minimum Normalised Stress value in (3-4) is noted. The final chosen 

configuration will be the overall configuration of all the configurations, 

produced from each starting configuration, which leads to the lowest 

Normalised Stress value in (3-2) another possibility is to use the tunneling 

method (Borg and Groenen 200). 

The SMACOF algorithm for metric MDS can be 

summarized by: 

1. Set Z = 𝐗[0], where𝐗[0]  is some (non)random start configuration. 

Set k = 0. Set ε to a small positive constant. 

2. Compute 𝛿𝑟
[0]

 = 𝛿𝑟  (𝐗[0]). Set 𝛿𝑟
[−1] = 𝛿𝑟

[0] . 

3. While k = 0 or (𝛿𝑟
[k−1] − 𝛿𝑟

[k]
> ε and k ≤ maximum iterations) do 
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4. Increase iteration counter k by one. 

5. Compute the Guttman transform 𝐗[k]). by  

Xu = 𝑛−1B(Z)Z                            if all 𝑤𝑖𝑗 = 1,                

Xu = v+B(Z)Z                            otherwise. 

          Where  

i. B(Z)has elements 𝑏𝑖𝑗 = − 
𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗
 ,                                      

                                   𝑏𝑖𝑗 = −∑ 𝑏𝑖𝑗  
𝑛
𝑗=1 ,∀𝑖 ≠ 𝑗. 

ii. v+ =  𝑛−1𝐇.       

iii. H=𝑰𝑛 −
1

𝑛
1 1𝑇. 

6. Compute 𝛿𝑟
[k]

 = 𝛿𝑟  (𝐗[k]). 

7. Set Z = 𝐗[k]. 

8. End while 

 

Example 3.2 

To illustrate the SMACOF algorithm, consider the following example 

the dissimilarities Δ and the starting configuration 𝐗[0]= Z as following  

 

Δ = [

0 5 3 4
5
3
4

0
2
2

2
0
1

2
1
0

]             Z=[

− 0.266 
0.451 

−0.539
0.252

0.016  −0.238
− 0.200 0.524

]  

 

The elements of the D(Z) are given by 𝒅𝒊𝒋 = √(𝒙𝒊 − 𝒙𝒋)
𝒕
(𝒙𝒊 − 𝒙𝒋) 

 

𝑑12 = √(− 0.266 − 0.451)2 + (−0.539 − 0.252)2=1.068 

𝑑13 = √(− 0.266 − 0.016 )2 + (−0.539 − −0.238)2=0.412 ` 
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𝑑14 = √(− 0.266 − − 0.200)2 + (−0.539 − 0.524)2=1.065 

𝑑23 = √(0.451− 0.016 )2 + (0.252− −0.238)2=0.655 

𝑑24 = √(0.451− − 0.200)2 + (0.252− 0.524)2=0 .706 

𝑑34 = √(0.016 − − 0.200)2 + (−0.238− 0.524)2=0.792 

 

D(Z)=  [

0.000 
1.068 

 1.068 
0.000 

0.412 0.655 
1.065 0.706 

     

 0.412 
0.655

1.065
0 .706

0.000 0.792
0.792 0.000

  ] 

 

Compute B(Z) 

 The elements of the B(Z) are given by 𝑏𝑖𝑗 = 𝑏𝑖𝑗 = − 
𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗
 ,                                      

                                                                        𝑏𝑖𝑗 = −∑ 𝑏𝑖𝑗  
𝑛
𝑗=1 ,∀𝑖 ≠ 𝑗 

We assume that all 𝑤𝑖𝑗 = 1. 

𝑏12 = −𝑤12𝛿12 𝑑12(𝑧) = −5 1.068 = −4.682                                                                           ⁄⁄  

𝑏13 = −𝑤13𝛿13 𝑑13(𝑧) = −3/0.412 = −7.273                                                                      ⁄          

𝑏14 = −𝑤14𝛿14 𝑑14(𝑧) =⁄ − 4 1.065⁄ = −3.756                                          

𝑏11 = −(𝑏12 + 𝑏13 + 𝑏14) =−(−4.682 − 7.273 − 3.756) = 15.712.                                                                              

𝑏23 = −𝑤23𝛿23 𝑑23(𝑧) =⁄ −2 0.655⁄ =−3.052 

𝑏24 = −𝑤24𝛿24 𝑑24(𝑧) = −2 0.706⁄⁄ = −2.835 

𝑏22 = −(𝑏21 + 𝑏23 + 𝑏24) = −(−4.682  − 3.052 − 2.835)

= 10.570                                                                                                                      

𝑏34 = −𝑤34𝛿34 𝑑34(𝑧) = −1 0.792⁄⁄ =−1.263 

𝑏33 = −(𝑏31 + 𝑏32 + 𝑏34) = −(−7.273 − 3.052 − 1.263) =

11.588                                                   



 

 

 

Chapter three Multidimensional scaling 

74 

𝑏44 = −(𝑏41 + 𝑏42 + 𝑏43) = −(−3.756 − 2.835 − 1.263 )               

= 7.853                                                                                                                                        

 

B(Z )= [

15.712 
−4.682  

−4.682 
10.570 

−7.273 −3.756
−3.052 −2.835

−7.273   
−3.756 

−3.052
−2.835

11.588
−1.263 

−1.263
7.853

] 

 

 
 

 

Compute 𝜹𝒓
[𝟎]

    
 

𝛿𝑟
[0]

   = ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖<𝑗   =   34.2992                    
 

(i,j) 𝛿𝑖𝑗  𝑑𝑖𝑗 (𝛿𝑖𝑗 − 𝑑𝑖𝑗)
2 

(1,2) 

(1,3) 
(1,4) 

(2,3) 
(2,4) 

(3,4) 

5 

3 
4 

2 
2 

1 

1.068 

0.412 

1.065 

0.655 

0.706 

0.792 

15.4606 

6.6977 
8.6142 

1.8090 
1.6744 

0.0433 

∑   34.2992 

                                                               
 

 
Compute the first update Xuby the Guttman transform 

 

Xu = 𝑛−1B(Z)Z                             

    

=
𝟏

𝟒
[

15.712 

−4.682  

−4.682 

10.570 

−7.273 −3.756

−3.052 −2.835
−7.273   

−3.756 

−3.052

−2.835

11.588

−1.263 

−1.263

7.853

][

− 0.266 

0.451 

−0.539

0.252
0.016  −0.238

− 0.200 0.524

] 
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Xu=[

−1.415 −2.471
1.633 1.107
0.249

−0.468
−0.067
1.431

] 

  

The elements of the D (Xu) are given by  𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
𝑡
(𝑥𝑖 − 𝑥𝑗) 

 
 

𝑑12 = √(−1.415 − 1.633)2 + (−2.471 − 1.107)2=4.700 

𝑑13 = √(−1.415 − 0.249 )2 + (−2.471 − −0.067)2=2.923  

𝑑14 = √(−1.415 − −0.468)2 + (−2.471− 1.431)2=4.016 

𝑑23 = √(1.633− −0.249 )2 + (1.107− −0.067)2=1.815 

𝑑24 = √(1.633− −0.468)2 + (1.107− 1.431)2=2.126 

𝑑34 = √0.249 − −0.468)2 + (−0.067− 1.431)2=1.661 

 

D (Xu) = [

0.000
4.700

4.700 

0.000
2.923 4.016

1.815 2.126
2.923 1.815 0.000 1.661

4.016 2.126 1.661 0.000

] 

 

To find The elements of the B(Xu) We assume that all 𝑤𝑖𝑗 = 1. 

The elements of the B(Xu) are given by 𝑏𝑖𝑗 = 𝑏𝑖𝑗 = − 
𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗
 ,                                      

                                                                         𝑏𝑖𝑗 = −∑ 𝑏𝑖𝑗  
𝑛
𝑗=1 ,∀𝑖 ≠ 𝑗. 

𝑏12 = −𝑤12𝛿12 𝑑12(𝑧) = −5 4.700 = −1.064                                                                           ⁄⁄  

𝑏13 = −𝑤13𝛿13 𝑑13(𝑧) = −
3

2.923
= −  1.026                                                                    ⁄          

𝑏14 = −𝑤14𝛿14 𝑑14(𝑧) =⁄ − 4 4.016⁄ = −  0.996                                        
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𝑏11 = −(𝑏12 + 𝑏13 + 𝑏14) =  3.086                                                                         

𝑏23 = −𝑤23𝛿23 𝑑23(𝑧) = −⁄ 2 1.815⁄ =−1.102 

𝑏24 = −𝑤24𝛿24 𝑑24(𝑧) = −2 2.126⁄⁄ = −0.941   

𝑏22 = −(𝑏21 + 𝑏23 + 𝑏24) = 3.107                                                                    

𝑏34 = −𝑤34𝛿34 𝑑34(𝑧) = −1 1.661⁄⁄ =−0.6020 

𝑏33 = −(𝑏31 + 𝑏32 + 𝑏34) =    2.539                                               

𝑏44 = −(𝑏41 + 𝑏42 + 𝑏43) = 2.539                                                                     

 

B(Xu )= [

3.086   
−1.064  

−1.064 
3.107   

−  1.026 −  0.996 
−1.102 −0.941

−  1.026   
−  0.996 

−1.102
−0.941

2.539
= −0.6020

= −0.6020
2.539

] 

 

 

 
 

set 𝑿[𝑢] =  𝑿[1]    and compute 𝛿𝑟  𝑿[1]   
 

𝛿𝑟  𝑿[1]     = ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖<𝑗   =  0.6758 

 
 

(i,j) 𝛿𝑖𝑗  𝑑𝑖𝑗 (𝛿𝑖𝑗 − 𝑑𝑖𝑗)
2 

(1,2) 

(1,3) 
(1,4) 

(2,3) 
(2,4) 

(3,4) 

5 

3 
4 

2 
2 

1 

4.700 

2.923 

4.016 

1.815 

2.126 

1.661 

0.09 

0oo6 
0.003 

0.034 
0.1059 

0.4369 

∑   0.6758 

                                                               

The difference of 𝛿𝑟  𝑿[0]     and 𝛿𝑟  𝑿[1]      

is large, 33.71531530, so it makes sense to continue the iterations.  

The second update is 
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𝑿[2] = 𝑛−1B(𝑿[1])𝑿[1]                             

=

𝟏

𝟒
[

3.086   

−1.064  

−1.064 

3.107   

−  1.026 −  0.996 

−1.102 −0.941
−  1.026   

−  0.996 

−1.102

−0.941

2.539

−0.6020

−0.6020

2.539

] [

−1.415 −2.471

1.633 1.107
0.249

−0.468

−0.067

1.431

] 

 

𝑿[2]=[

1.473  −2.540
1.686 1.99
0. .154
−0. .366

0678
1.274

] 

 
Continue the iterations until the difference in subsequent Stress values is 

less than 10−6. 

 

3.3.2Nonmetric MDS: 

         Nonmetric multidimensional scaling is also known as ordinal 

multidimensional scaling. 

The assumption that proximities behave like distances might be too 

restrictive, when it comes to employing MDS for exploring the perceptual 

space of human subjects. In order to overcome this problem, Shepard 

(1962) and Kruskal (1964) developed a method known as nonmetric 

multidimensional scaling. In nonmetric MDS, only the ordinal information 

in the proximities is used for constructing the spatial configuration. 

         As mention before, the nonmetric MDS method abandon the metric 

nature of the transformation 

                                                   δ𝑖𝑗= 𝑓(d𝑖𝑗),  

Where 

          𝑓(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) can now be arbitrary.  
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The only requirement for nonmetric MDS is that the transformation must 

preserve the rank order of dissimilarities. The aim with Nonmetric MDS is 

to find an optimal configuration X: 𝑛 × 𝑟 by matching the disparities   

�̂�𝑖𝑗(�̂�𝑖𝑗 is the disparity between objects i and j) to 𝑑𝑖𝑗  by minimizing a 

certain loss function. This is similar to the metric least squares scaling 

method, the difference being that the dissimilarities 𝛿𝑖𝑗 in the loss functions 

are now replaced by disparities, �̂�𝑖𝑗. The actual dissimilarities value (𝛿𝑖𝑗 ) 

are only used to determine the rank-order of the disparities, �̂�𝑖𝑗 , This 

means 

    𝛿𝑖𝑗 < 𝛿𝑘𝑙 ⇒    �̂�𝑖𝑗 < �̂�𝑘𝑙. 

The disparities are also sometimes called pseudo distances. These 

disparities which are chosen in an optimal manner will be discussed later. 

          

         

The loss function of nonmetric MDS 

 The loss function used by Brog and Groenen (2005) for nonmetric MDS 

is very similar to the loss function used for metric MDS. This loss function 

will also be referred to as Raw stress, with  

Raw Stress= ∑ 𝑤𝑖𝑗(𝑑𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖<𝑗        (3-5)                 

Where 

𝑑𝑖𝑗  is the Euclidean distance between points i and j  

�̂�𝑖𝑗 is the disparity between objects i and j  

𝑤𝑖𝑗 the weights must contain non-negative values.  

The weights are usually chosen as  

𝑤𝑖𝑗 = 0             if i=j     and  

𝑤𝑖𝑗 = 1              otherwise. 
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Other value of 𝑤𝑖𝑗 are also allowed and different choices of 𝑤𝑖𝑗 lead to 

different loss functions (Brog andGroenen, 2005). 

          The Raw Stress value in (3-5) is a badness-of-fit measure, but it is 

not very informative. A large value does not necessarily indicate a bad fit, 

as it depends on the scale of distances in the configuration X:𝑛 × 𝑟.         

Normalized Stress can be used remove the scale dependency where 

 Normalized Stress =  
∑ 𝑤𝑖𝑗(𝑑𝑖𝑗  −𝑑𝑖𝑗)

2
𝑖<𝑗   

∑ 𝑤𝑖𝑗𝑑𝑖𝑗 
2

𝑖<𝑗
 .                           (3-6) 

 

The aim of the nonmetric MDS method: 

The aim of the nonmetric MDS method is to find an optimal configuration 

X: 𝑛 × 𝑟 of points, from which distances 𝑑𝑖𝑗   and disparities �̂�𝑖𝑗 can be 

calculated, that will minimize the Normalized Stress (3-6) or Raw Stress 

(3-5) loss functions. However, the minimizing of the Normalized Stress (3-

6) function is not an easy task. The minimizing is usually done by an 

iterative process. The difference between the iterative process of the metric 

least squares scaling method and this iterative process is that the disparities 

�̂�𝑖𝑗 also need to be optimally chosen, which depends on the distances 𝑑𝑖𝑗  . 

The distances 𝑑𝑖𝑗  , in turn, depend on the configuration X: 𝑛 × 𝑟, which 

changes during each iteration. Therefore, the disparities �̂�𝑖𝑗and the 

distances 𝑑𝑖𝑗   need to be optimally chosen during each step of the iteration. 

The SMACOF algorithm can again be minimize the Normalized Stress (3-

6) or Raw Stress (3-5) loss functions. 

 

Scaling by a MAjorizing of a COmplicated Function (SMACOF)  

The SMACOF algorithm used for the nonmetric MDS method is described 

in detail by Brog and Groenen (2005). 

1. Set Z = 𝐗[0], where𝐗[0]  is some (non)random start configuration. 
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    Set k = 0. Set ε to a small positive constant. 

2. Find optimal disparities �̂�𝑖𝑗 for fixed distances𝑑𝑖𝑗 (𝐗
[0]). 

 3. Compute 𝛿𝑟
[0]

 = 𝛿𝑟  (�̂� ,𝐗[0]). Set 𝛿𝑟
[−1] = 𝛿𝑟

[0] . 

4. While k = 0 or (𝛿𝑟
[k−1] − 𝛿𝑟

[k]
> ε and k ≤ maximum iterations) do 

5. Increase iteration counter k by one. 

6. Compute the Guttman transform 𝐗[k]). by  

Xu = 𝑛−1B(Z)Z                            if all 𝑤𝑖𝑗 = 1,                

Xu = v+B(Z)Z                            otherwise. 

          Where  

i. B(Z)has elements  𝑏𝑖𝑗 = − 
𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗
 ,                                      

                                   𝑏𝑖𝑗 = −∑ 𝑏𝑖𝑗  
𝑛
𝑗=1 ,∀𝑖 ≠ 𝑗.  

ii. v+ =  𝑛−1𝐇.       

iii. H=𝑰𝑛 −
1

𝑛
1 1𝑇. 

 

7. Find optimal disparities �̂�𝑖𝑗 for fixed distances 𝑑𝑖𝑗 (𝐗
[k]). 

8. Compute 𝛿𝑟
[k]

 = 𝛿𝑟  (�̂�, 𝐗[k]). 

9. Set Z = 𝐗[k]. 

10. End while 

Brog and Groenen (2oo5) suggest using Normalized Stress (3-7) rather 

than Raw Stress (3-6) as loss function, because using the latter may lead to 

degenerate solutions.  

Heiser (1991) also points out that negative disparities could lead to 

degenerate solutions.  

The SMSCOF algorithm ensures that the Normalized Stress value in (3-7) 

reaches a local minimum, but the local minimum may not be a global 

minimum. The problem of whether the local minimum is indeed the global 
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minimum can be overcome using multiple initial configurations or by using 

the tunneling method. 

 

Monotone regression with Kruskal’s up-and-down-blocks 

algorithm: 

Kruskal's least-squares monotonic transformation (or monotone 

regression ) is used MDS techniques for fitting object space distances to 

the raw proximity data. We use the following example to illustrate this 

way.   

Example 3. 

Table 3.1 presents a proximity matrix for 5 objects and Table 3.2 presents 

the distances between the objects in the object space derived at this point 

in the MDS program. 

 

 
 

 
 

 
 

 
 

 
 

 
 

Table 3.1 Proximity Matrix                              Table 3.2. Distance  

 

It is the goal of the monotone regression procedure to find a least-square 

monotonic fit of the distances to the proximities. In this way, a 

 A 

 

B 

 

C 

 

D E 

A 
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C 

D 

E 

0 

1.0 

6.4 

1.5 

3.0 

1.0 

0 

6.2 

2.5 

8.4 

6.4 

6.2 

0 

4.2 

8.2 

1.5 

2.5 

4.2 

0 

8.4 

3.0 

8.4 

8.2 

8.4 
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A 
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C 

D 

E 

0 

1 
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4 

1 

0 

7 

2 
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8 

7 

0 
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5 

0 

6 

4 

10 
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comparison may be made to see if the current space is a proper solution to 

the MDS analysis. 

Since the data and distance matrices are symmetric, we only need handle 

the lower-half matrix of each in the procedure; the upper-half of the 

resulting disparity matrix is merely a symmetric reflection of the lower-

half. 

The first step is to arrange the proximity cells into ascending order of 

proximity. The outcome of this step is shown in the first two columns of 

Table 3.3. The distances for these cells are shown in the third column of 

Table3.3. If the distances perfectly fit the given proximities in the 

proximity matrix, the distances in column three should also be in 

ascending order. Since they are not in such order, they are transformed 

into disparities to measure the departure from the perfect fit. 

The transformation consists of a series of comparisons of distances in the 

order given in Table 3.3. Each time a distance is found out of place (i.e. 

the series descends instead of ascends), the distances of concern are 

equalized to satisfy minimally the monotonic requirement. 

In the example, the series of comparisons proceeds from top to bottom. 

1. The first distance 1.0 does not exceed the second distance 2.5; so, 

these distances fit the monotonic relation established by the 

proximity matrix.  

2. The second distance 2.5 exceeds the third distance 1.5. To correct 

this relation, each of these two distances is replaced with their 

mean 2.0. Thus, the second distance and third distance have been 

replaced by disparities 2.0. 

3. The forth distance 3.0 does not exceed the fifth distance 4.2; so, 

these distances fit the monotonic relation established by the 

proximity matrix.  
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4. The fifth distance 4.2 does not exceed the sixth distance 8.4; so, 

these distances fit the monotonic relation established by the 

proximity matrix.  

5. The sixth distance 8.4 is compared to the seventh distance 6.2. The 

sixth and seventh disparities become 7.3, the mean of 8.4 and 6.2. 

Now, however, the seventh disparity 7.3 exceeds the eighth 

distance 6.4. In this case, the sixth, seventh, and eighth disparities 

become 7.0, which is the mean of the sixth, seventh, and eighth 

distances (8.4 + 6.2 + 6.4)73. This disparity exceeds the fifth 

distance 4.2 and does not exceed the ninth distance 8.2.  

6. The ninth distance 8.2 does not exceed the tenth distance 8.4; so, 

these distances fit the monotonic relation established by the 

proximity matrix. 

The calculation of the disparities has been completed with the result 

shown in the last column of Table3.3. 

 

                Table 3.3. Example of Disparity Calculation 

OBJECT 

PAIR 

PROXIMITY DISTANCE DISPARITY 

AB 

BD 

AD 

AE 

CD 

DE 

BC 

AC 

CE 

BE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.0 

2.5 

1.5 

3.0 

4.2 

8.4 

6.2 

6.4 

8.2 

8.4 

1.0 

2.0 

2.0 

3.0 

4.2 

7.0 

7.0 

7.0 

8.2 

8.4 
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Example 3.3 

To illustrate the SMACOF algorithm, consider the following example the 

dissimilarities Δ and the starting configuration 𝐗[0]= Z as following  

 

Δ= [

0 3 2 5
3 0 1 4
2 1
5 4

0
6

6
0

]                             Z =[

3 2
2 7
1
10

3
4

] 

The elements of the D(𝐗[0]) are given by 𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
𝑡
(𝑥𝑖 − 𝑥𝑗) 

𝑑12 = √(3 − 2)2 + (2 − 7)2 = 5.1 

𝑑13 = √(3 − 1)2 + (2 − 3)2  =2.2 

𝑑14 = √(3 − 10)2 + (2 − 4)2 =7.3 

𝑑23 = √(2 − 1)2 + (7 − 3)2 = 4.1 

𝑑24 = √(2 − 10)2 + (7 − 4)2 = 8.5 

𝑑34 = √(1 − 10)2 + (3 − 4)2 =9.1 

  

D (𝐗[0]) = [

0 5.1 2.2 7.3
5.1 0 4.1 8.5

2.2 4.1
7.3 8.5

0
9.1

9.1
0

] 

Compute disparities �̂�𝒊𝒋 for D (𝐗[0]) 

 The first distance 4.1 exceeds the second distance 2.2.  To correct 

this relation, each of these two distances is replaced with their 

mean. Thus, the first distance and second distance have been 

replaced by disparities 3.17. 
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 The third distance 5.1 does not exceed the forth distance 8.5; so, 

these distances fit the monotonic relation established by the 

proximity matrix.  

 The forth distance 8.5 exceeds the fifth distance 7.3.  To correct 

this relation, each of these two distances is replaced with their 

mean. Thus, the forth distance and fifth distance have been 

replaced by disparities 7.9 

 

 

 

 

 

 

 

 

Compute B(𝐗[0]) 

 The elements of the B(Z) are given 𝑏𝑖𝑗 = − 
𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗
 ,                                      

                                                                   𝑏𝑖𝑗 = −∑ 𝑏𝑖𝑗  
𝑛
𝑗=1 ,∀𝑖 ≠ 𝑗.  

 

We assume that all 𝑤𝑖𝑗 = 1. 

𝑏12 = −𝑤12�̂�12 𝑑12(𝑧) = −5.1 5.1 = −1                                                                           ⁄⁄  

𝑏13 = −𝑤13�̂�13 𝑑13(𝑧) = −3.17/2.2 = −  1.44                                                                    ⁄          

𝑏14 = −𝑤14�̂�14 𝑑14(𝑧) =⁄ − 7.9 7.3⁄ = −1.08                                                 

𝑏11 = −(𝑏12 + 𝑏13 + 𝑏14) =− (−1 −  1.44 − 1.08) =  3.52                                                                        

(i,j) 𝛿𝑖𝑗  𝑑𝑖𝑗 �̂�𝑖𝑗 

2,3 
1,3 

1,2 
2,4 
1,4 

3,4 

1 
2 

3 
4 
5 

6 

4.1 
2.2 

5.1 
8.5 
7.3 

9.1 

3.17 
3.17 

5.1 
7.9 
7.9 

9.1 
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𝑏23 = −𝑤23�̂�23 𝑑23(𝑧) =⁄ −3.17 4.1⁄ =−0.773 

𝑏24 = −𝑤24�̂�24 𝑑24(𝑧) = 7.9 8.5⁄⁄ = −0.929                                                  

𝑏22 = −(𝑏21 + 𝑏23 + 𝑏24) = −(−0.929− 0.773 − 1) = 2.702                  

𝑏34 = −𝑤34�̂�34 𝑑34(𝑧) = −9.1 9.1⁄⁄ =−1 

𝑏33 = −(𝑏31 + 𝑏32 + 𝑏34) = −(−1.44− 0.773 − 1) = 3.213                   

𝑏44 = −(𝑏41 + 𝑏42 + 𝑏43) = −(−1.08− 0.929 − 1) = 2.009                   
 
 
 

B(𝐗[0]) = 

[
 
 
  3.52 −1 −  1.44   −1.08 

−1 2.702 −0.773 −0.929
−  1.44   −0.773
−1.08 −0.929

3.213
−1

−1
2.009 ]

 
 
 
 

 

 

Compute 𝛿𝑟
[0]

    

 

𝛿𝑟
[0]

   =  
∑ 𝑤𝑖𝑗(𝑑𝑖𝑗−𝑑𝑖𝑗)

2
𝑖<𝑗   

∑ 𝑤𝑖𝑗𝑑𝑖𝑗
2

𝑖<𝑗
=

2.6

256.0
= 0.1                                     

 

 

Compute the first update 𝑿[𝟏]by the Guttman transform 

 

𝑿[1] = 𝑛−1B(𝐗[0])𝐗[0]                             

(i,j) 𝑑𝑖𝑗 �̂�𝑖𝑗 𝑑𝑖𝑗
2
 (𝑑𝑖𝑗 − �̂�𝑖𝑗)

2 

2,3 
1,3 

1,2 
2,4 

1,4 
3,4 

4.1 
2.2 

5.1 
8.5 

7.3 
9.1 

3.17 
3.17 

5.1 
7.9 

7.9 
9.1 

16.8 
4.8 

26.0 
72.3 

53.3 
82.8 

0.9 
0.9 

0 
0.4 

0.4 
0 

∑   256.0 2.6 
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    =
1

4
 

[
 
 
  3.52 −1 −  1.44   −1.08 

−1 2.702 −0.773 −0.929
−  1.44   −0.773
−1.08 −0.929

3.213
−1

−1
2.009 ]

 
 
 
[

3 2
2 7
1
10

3
4

] 

𝑿[1] = [

−3.460 −3.910
0.408 −0.851

−3.163
3.498

−7.143
−5.767

]  

The elements of the D (𝑿[1]) are given by  𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
𝑡
(𝑥𝑖 − 𝑥𝑗) 

𝑑12 = √(−3.460 − 0.408)2 + (−3.910− −0.851)2

= 4.931                                      

𝑑13 = √(−3.460 − −3.163)2 + (−3.910+ 7.143)2 = 3.073    

𝑑14 = √(−3.460 − 3.498)2 + (−3.910 + 5.767)2 = 11.919 

𝑑23 = √(0.408− −3.163)2 + (−0.851 + 7.143)2 =7.234  

𝑑24 = √(0.408− 3.498)2 + (−0.851+ 5.767)2 = 5.806 

𝑑34 = √(−3.163− 3.498)2 + (−7.143 + 5.767)2 = 6.802 

 

D (𝑿[1]) = [

0.000 4.931 3.073 11.919
4.931 0.000 7.234 5.806
3.073 7.234 
11.919 5.806

0.000

6.802
6.802
0.000

] 

 

Compute disparities �̂�𝒊𝒋 for D (𝑿[1] 

 

 The first distance 7.234 exceeds the second distance 3.073.  To 

correct this relation, each of these two distances is replaced with 

their mean5.154. But, the first distance and second distance exceed 

the third distance 4.931. To correct this relation, each of these 
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distances is replaced with their mean Thus, the first distance, 

second and the third distance have been replaced by disparities 

5.079.   

 

 The forth distance 5.806 does not exceed the fifth distance 11.919; 

so, these distances fit the monotonic relation established by the 

proximity matrix.  

 The fifth distance 11.919 exceeds the sixth distance 6.802.  To 

correct this relation, each of these two distances is replaced with 

their mean. Thus, the fifth distance and sixth distance have been 

replaced by disparities 9.3605. 

 
 

 

 

 

 

 

 

 

 

Compute B(𝑿[1]) 

 The elements of the B(𝑿[1]) are given by 𝑏𝑖𝑗 =
𝑤𝑖𝑗�̂�𝑖𝑗

𝑑𝑖𝑗
 .   

We assume that all 𝑤𝑖𝑗 = 1. 

𝑏12 = −𝑤12�̂�12 𝑑12(X
u) = −5.1 5.1 = −1                                                                           ⁄⁄  

(i,j) 𝛿𝑖𝑗  𝑑𝑖𝑗 �̂�𝑖𝑗 

2,3 

1,3 

1,2 

2,4 

1,4 

3,4 

1 

2 

3 

4 

5 

6 

7.234 

 3.073   

4.931 

5.806 

11.919 

6.802       

5.079 

5.079 

5.079 

5.806 

9.3605 

9.3605 
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𝑏13 = −𝑤13�̂�13 𝑑13(X
u) = −3.17/2.2 =  −  1.44                                                                    ⁄          

𝑏14 = −𝑤14�̂�14 𝑑14(X
u) =⁄ − 7.9 7.3⁄

= −1.08                                                             

𝑏11 = −(𝑏12 + 𝑏13 + 𝑏14) =− (−1 −  1.44 − 1.08) =  3.52                                                                        

𝑏23 = −𝑤23�̂�23 𝑑23(X
u) =⁄ −3.17 4.1⁄ =−0.773 

𝑏24 = −𝑤24�̂�24 𝑑24(𝑧X
u) = 7.9 8.5⁄⁄

= −0.929                                                              

𝑏22 = −(𝑏21 + 𝑏23 + 𝑏24) = −(−0.929− 0.773 − 1)

= 2.702                                   

𝑏34 = −𝑤34�̂�34 𝑑34(X
u) = −9.1 9.1⁄⁄ =−1 

𝑏33 = −(𝑏31 + 𝑏32 + 𝑏34) = −(−1.44 − 0.773− 1) =

3.213                            

𝑏44 = −(𝑏41 + 𝑏42 + 𝑏43) = −(−1.08 − 0.929 − 1)
= 2.009                                    

 

B(𝑿[1])[

3.52 −1 −  1.44 −1.08  
−1 2.702 −0.773 −0.929

−  1.44 −0.773
−1.08  −0.929

3.213
−1

−1
2.009

] 

 

 

Compute 𝛿𝑟 𝑿[1]      
 

𝛿𝑟
[0]

   =  
∑ 𝑤𝑖𝑗(𝑑𝑖𝑗−𝑑𝑖𝑗)

2
𝑖<𝑗   

∑ 𝑤𝑖𝑗𝑑𝑖𝑗
2

𝑖<𝑗
=

13.808

308.129
= 0.045 
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The second update is 

 

𝑿[2] = 𝑛−1B(𝑿[1])𝑿[1]                            

𝑿[2]=

 
𝟏

𝟒
[

3.52 −1 −  1.44 −1.08  

−1 2.702 −0.773 −0.929
−  1.44 −0.773

−1.08  −0.929

3.213

−1

−1

2.009

][

−3.460 −3.910

0.408 −0.851
−3.163

3.498

−7.143

−5.767

]                                   

 

          𝑿[2] = [

−8.127 −2.471
7.007 7.132 

−5.496
4.916

−16.662
5.459

]  

 

Continue the iterations until the difference in subsequent Stress values is 

less than 10−6. 

 

(i,j) 𝑑𝑖𝑗  �̂�𝑖𝑗 𝑑𝑖𝑗 
2  (𝑑𝑖𝑗 − �̂�𝑖𝑗)

2 

2,3 

1,3 

1,2 

2,4 

1,4 

3,4 

7.234 

 3.073   

4.931  
5.806 

11.919 

6.802     

5.079 

5.079 

5.079 

5.806 

9.3605 

9.3605 

52.331 

9.443 

24.315 

33.710 

142.063 

46.267 
 

4.644 

4.024 

0.022 

0 

2.559 

2.559 

 

∑   308.129 13.808 
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3.3.2.1 Judging the goodness of fit 

        The amount of stress may also be used for judging the goodness of fit 

of an MDS solution: a small stress value indicates a good fitting solution, 

whereas a high value indicates a bad fit. Kruskal (1964a) provided some 

guidelines for the interpretation of the stress value with respect to the 

goodness of fit of the solution (Table 3.4). 

 

Caution: These simple guidelines are easily misused. In order to avoid 

misinterpretation, the following should be kept in mind: 

 There are many different stress formulae in the MDS literature. The 

guidelines, however, apply only to the stress measure computed by 

equation (3-4). 

 Stress decreases as the number of dimensions increases. Thus, a two-

dimensional solution always has more stress than a three-

dimensional one. 

 

Stress Goodness of fit 

   

> .20 

0.10 

0.05 

0.025 

0.00 

poor 

fair 

good 

excellent 

               perfect 

                                Table 3.4: Stress and goodness of fit. 
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The Shepard diagram and scree plot can be used to describe the badness-

of-fit.  

The Shepard diagram   

The Shepard diagram plots the disparities �̂�𝑖𝑗 and distances   𝑑𝑖𝑗   on the 

same graph, which gives an indication of how well the disparities are fitted 

to the distances. The ( 𝑑𝑖𝑗 , �̂�𝑖𝑗 )  pairs are plotted and these pairs all lie on 

a monotonically increasing regression line. The ( 𝑑𝑖𝑗 , �̂�𝑖𝑗 ) pairs are also 

plotted. The vertical distance between these points gives a measure of the 

corresponding error   𝑒𝑖𝑗 = ( 𝑑𝑖𝑗 − �̂�𝑖𝑗 ). The error gives an indication of 

the size of mismatch between the distances and the corresponding 

disparities. Larger errors will cause a higher Normalized Stress (3-7) and 

Raw stress (3-6) value.  

 

             

Scree plot 

In a scree plot, the amount of stress is plotted against the number of 

dimensions. Since stress decreases monotonically with increasing 

dimensionality, one is looking for the lowest number of dimensions with 

acceptable stress. An "elbow" in the scree plot indicates, that more 

dimensions would yield only a minor improvement in terms of stress. Thus, 

the best fitting MDS model has as many dimensions as the number of 

dimensions at the elbow in the scree plot. (Borg and Groenen, 2005). 
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 Left panel: Scree plot displaying an elbow at three dimensions. 
Right panel: Shepard diagram with the optimally scaled proximities. 
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IV.CLUSTER ANALYSIS 

4.1 Introduction 

Cluster analysis is an area of statistics that involves sorting observed 

data into natural groupings based on similarity. Grouping data is important 

because it can reveal a lot of information about the data such as outliers, 

dimensionality, or interesting relationships that may have previously gone 

unnoticed. Many think of clustering methods much like classification; 

however, there are important differences. In classification, there is some 

pre-specified number of groups or categories into which variables or data 

are placed. There are also specific rules for placing items into each 

category, depending on the method of grouping the data. Unlike 

classification, in cluster analysis there is no prior specification about the 

number of groups or types of groups to which different variables or data 

points will be assigned. The grouping is done based solely on similarity 

measures and the number of groups that seems to suit the data best is often 

determined within the clustering algorithm. These characteristics can make 

cluster analysis difficult. The groupings really depend on the definition of 

similarity. 

4.2 Cluster Analysis 

           The word clustering is defined as: "a grouping of a number of 

similar things" [University (2006)].Here, the word similar refers to the 

objects present in the same group, which possess like characteristics. In 

data mining, the goal of cluster analysis methods is to cluster unlabeled 

data, with no or little prior information about the class labels, into groups, 

such that objects in the same subgroup are very similar to one another and 

objects in two different subgroups are very different [Witten and  Frank 

( 2005)] Han& Kamber (2006)] [Dunham ( 2002]. Let D be a dataset 

with n objects. When a cluster analysis algorithm is applied to this dataset 
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D, it groups the data in 𝐶1 ,𝐶2 ,…𝐶𝑘  clusters given that the total number of 

clusters is k. 

 The main objective of a cluster analysis method is to minimize the 

distance between the objects located in the same cluster and to maximize 

the distance between the objects located in different clusters. Figure 4.1 (a) 

depicts a sample dataset in a 2-dimensional space and Figure 4.1 (b) shows 

the clusters marked with circles when k = 3. The results after applying a 

cluster analysis algorithm show that the clusters are generated in such a 

way so that the objects in each cluster are very close to one another. 

However, in the real world, the datasets are not as simple as the one 

depicted above. The objects are not always so clearly separated and the 

clusters are not usually as well-defined. Moreover, the datasets may 

contain hundreds or even thousands of objects and the feature space of 

these objects may also be very high dimensional. As a result, the task of 

clustering is often more complex and challenging. 

       (b)                 (a) 

 

 

 

 

 

 

Figure 4.1: Clustering example: (a) input data and (b) the 

clusters.                                                              

 

 

In the following subsection we discuss the fundamental steps of a typical 

cluster analysis task. 
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4.2.1 Cluster Analysis Procedure  

Cluster analysis methods usually follow a number of sequential steps 

[Jain & etal  (1999)], [Xu & Wunsch  (2005)]. Figure 4.2 illustrates the 

basic steps of a cluster analysis procedure as discussed in [Xu & Wunsch  

(2005)]. According them, the four main steps that most clustering 

algorithms follow are:  

a) Feature selection or feature extraction. 

 b) Design or selection of cluster analysis algorithm. 

 c) Cluster validation.  

d) Interpretation of results.  

We briefly discuss each of the four components below. 

 

 

Figure 4.2: Sequential procedure of a cluster analysis process [ Xu and Wunch (2005)]. 

 

a-Feature Selection or Extraction: In practical applications, datasets 

often contain a large number of features to represent the objects. However, 

not all the features are useful for the learning process. Most of the time, 

there are several features. 

The experimental studies of Witten et al., (2005) show that, adding such 

features to the cluster analysis process usually deteriorates the performance 

of the algorithms. As such, techniques such as Feature Selection and 

Feature Extraction often prove to be useful to carefully reduce the size of 
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the original feature set. According to Jain et al. [Jain  et al  (1999)] Feature 

Selection is the process of identifying the most effective subset of features 

from the original feature set. In contrast, Feature Extraction is the process 

of producing a new set of features by performing transformations on the 

original feature set [Xu and Wunsch  (2005) ], [Jain et al  (1999)]. Both 

of the processes reduce the feature size by removing the redundant or 

irrelevant features and in doing so, simplify the clustering process. 

b-Design or Selection of Cluster Analysis Algorithm: 

This step involves the selection of a proximity measure and a cluster 

analysis algorithm. The selection of a proximity measure directly affects 

the formation of the clusters.  One of the commonly used distance measures 

is the Euclidean distance measure. There are, however, a number of other 

proximity measures available in the literature which we discussed in detail 

in Chapter 2. In addition to the selection of a proximity measure, the results 

from cluster analysis also vary depending on the clustering algorithm that 

has been selected [Jain et al (1999)]. Several algorithms partition the data 

into a predefined number of groups (i.e. K-means), whereas other 

algorithms output a nested series of clusters [Jain  et al  (1999)]. Some of 

the algorithms are suitable for large datasets, whereas other methods 

handle outliers better. We discuss various cluster analysis methods in 

Section 4.3. 

 

c-Cluster Validation: 

Given a dataset, a cluster analysis algorithm will always produce 

proximity functions may produce different results. Therefore, it is 

necessary to assess the results to compare, evaluate, and measure the 

goodness of the cluster analysis methods. There are several evaluation and 

validation measures proposed in the literature that help to perform such an 

assessment. According to Jain et al. [Jain et al  (1999)] and. [Xu et 
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al(2005)], these cluster validation measures are categorized into three 

groups:  

1) External measures.  

2) Internal measures.  

3) Relative measures. 

The external measures consider the prior knowledge about the data (i.e. 

class labels) against the cluster analysis results for the assessments.  

In contrast, the internal measures compute the assessment without any 

reference to the external information; they only consider the information 

present in the original dataset.  

The relative measures perform the evaluation by comparing the results 

from various cluster analysis methods with one another. 

 

d-Interpretation of Results: 

The ultimate goal of any cluster analysis task is to partition the data 

into meaningful groups. As such, in this step, domain experts often analyze 

the clusters to discover the hidden patterns among the objects in a cluster 

and to assign a label to the clusters based on the underlying patterns. 

 

4.2.2 Limitations: 

A number of application domains to which the cluster analysis 

algorithms are often applied. The areas include data mining, machine 

learning, pattern recognition, bioinformatics, image processing, and many 

others. Nevertheless, when the cluster analysis techniques are applied to 

real-world datasets, several problems arise. In this section, we briefly state 

the drawbacks of cluster analysis as addressed by Dunham in [Dunham ( 

2002)]. 

• One of the main difficulties that arise with respect to a cluster 

analysis task is to correctly and automatically determine the number of 
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clusters k. In cluster analysis, most of the time the prior knowledge or 

additional information about the data is not available to the users. As such, 

the algorithms that require the number of clusters A; as input need special 

consideration. Intuitively, providing an incorrect value for k may result in 

unsatisfactory results. For instance, selecting a smaller value for k may 

over-generalize the results as it will try to combine natural clusters to 

achieve the user-specified number of clusters. In contrast, if k is set to a 

very high value it may decompose the natural clusters into many smaller 

subsets to achieve the desired number of clusters. Both the cases will have 

significant impact on the results. 

• Interpreting the clustering results or more specifically, interpreting 

the clusters, is also considered to be one of the major problems in cluster 

analysis. As class labels are not available during the process, it may not 

always be possible to correctly interpret the semantic meaning of each of 

the individual clusters without any domain-specific knowledge. 

• Handling outliers is another fundamental problem in cluster 

analysis. In a dataset, outliers are objects that are very different from the 

other objects in the dataset, and as such, they usually form their own 

clusters. Placing an outlier in a cluster that contains objects that are very 

different from it (i.e. to achieve the desired number of clusters), may result 

in the formation of poor clusters [Dunham ( 2002)]. 

• Because dynamic data change over time, cluster membership may 

also change over time and therefore requires careful consideration to 

accommodate the changes. 

• Another problem that may be encountered during the cluster 

analysis process, is that there may be no exact or correct answer to the 

clustering solution. Given a dataset, different algorithms may return 

different sets of clusters. Moreover, different users may also have 

different views and therefore may interpret the clusters differently. These 
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difficulties may make the decision making task more complex and 

ambiguous. 

• Finally, with the increasing amount of data, problems 

surrounding high dimensionality and handling of large datasets have also 

become a point of concern. However, these problems also open the door 

to new research ideas. Various algorithms have been proposed to solve 

one or more of these problems efficiently. In the next section, we provide 

an overview of the cluster analysis methods and briefly address their 

advantages and disadvantages. 

 

4.3 Overview of Cluster Analysis Methods 

There have been many cluster analysis algorithms proposed in the 

literature. A number of these algorithms are particularly suitable for a 

certain type of data (e.g. numeric or nominal). Several algorithms are also 

suitable for a particular purpose or the application domain [Han and 

Kamber (2006)], [Kaufman and Rousseeuw (2005)]. We briefly present 

several cluster analysis methods as discussed in [Dunham ( 2002)] and 

[Han and Kamber (2006)]. We place particular emphasis on the first two 

methods, partitional and hierarchical, as they are strongly related to this 

study. 

 

4.3.1 Partitional Methods: 

A partitioning method creates k partitions, called clusters, from 

given set of n data objects. Initially, each data objects are assigned to some 

of the partitions. An iterative relocation technique is used to improve the 

partitioning by moving objects from one group to another. Here, each 

partition is represented by either a centroid or a medoid.  
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A centroid is an average of all data objects in a partition, while the 

medoid is the most representative point of a cluster [Velmurugan,T. and 

Santhanam,T.,(2011)].  The fundamental requirements of the partitioning 

based methods are each cluster must contain at least one data object, and 

each data objects must belong to exactly one cluster. In this category of 

clustering, various methods have been developed. 

4.3.1.1 K-means Algorithm: 

K-means is an iterative algorithm where a cluster is represented by 

the centroids (the mean value of the objects in a cluster).McQueen (1967) 

proposed the K-means cluster method [kandil (2011)].  

Given a dataset and the number of clusters k, the algorithm works as 

follows [kandil (2011)] the first step of this algorithm is to initialize the 

centroids. There are a number of different ways to assign the initial values 

to the centroids. We may either randomly select any k objects from the 

data, or select the first k objects and assign them as the centroids of the 

clusters. Once the algorithm is initialized with the centroids, the next step 

is to calculate the distance from each centroid to all the objects in the 

dataset. A distance measure, such as the Euclidean distance, is often used 

to calculate this distance. Next, the objects are assigned to the respective 

clusters based on the minimum distance from the centroids. Therefore, an 

object will be assigned to a cluster if the distance between its centroid and 

the object is minimum (compared to the distances between the centroids of 

other clusters and this object). Once all the objects are assigned to their 

respective clusters, we recalculate the centroids with the new cluster 

assignments. The centroid, as mentioned above, is the mean value of all 

the objects in a cluster. We then iterate the process a number of times until 

the stopping    criterion is satisfied. This is usually satisfied when the 

objects are no longer reallocated to different clusters or when the maximum 

number of iterations is reached.  
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The K- means  Algorithm: 

Input: 

Input : ‘k’, the number of clusters to be partitioned;  ‘n’, the number of 

objects. 

Output: 

A set of ‘k’ clusters based on given similarity function 

3.  until no change. 

Example4.3.1.1 . In this example, the dataset contains 9 items: 

D = {2, 4, 10, 12, 3, 20, 30, 11, 25}. Let k = 2, the desired number of 

clusters. We use the Euclidean distance as the distance measure. The first 

step of the algorithm consists in assigning any two items as the cluster 

centroids. These items are either selected randomly or the first k items are 

selected. We used the later approach for this example. Below we show the 

calculations for each phase. 

Iteration 1: centroid1 = 2 and centroid 2 = 4 

The distance between centroid l and each item in 

D:{0,2,8,10,1,18,28,9,23} 

The distance between centroid 2 and each item in 

D:{2,0,6,8,1,16,26,7,21} 

According to the minimum distance between the centroids and each of 

the items, the clusters are: 

Algorithm: 

1.  Arbitrarily choose ‘k’ objects as the initial  cluster centers; 

2. Repeat, 

a. (Re)assign each object to the cluster to which the object is the most 

similar; based on the given similarity function; 

b. Update the centroid (cluster means), i.e., calculate the mean value of 

the objects for each cluster; 
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Cluster1 = {2, 3} Since the item 3 is equally close to centroid l and 

centroid 2, we arbitrarily selected cluster 1. 

Cluster2 = {4, 10, 12, 20, 30, 11, 25} 

Iteration 2: centroid l = 
2+3

2
= 2.5 and  

                   centroid2 = 
4+10+12+20+30+11+25 

7
= 16 

The distance between centroid l and each item in D: 

{0.5, 1.5, 7.5, 9.5, 0.5, 17.5, 27.5, 8.5, 22.5} 

The distance between centroid2 and each item in D: 

{14, 12, 6, 4, 13, 4, 14, 5, 9} 

According to the minimum distance between the centroids and each of 

the items, the clusters are: 

Cluster 1 = {2, 3, 4} Since the item 4 is equally close to centroid l 

and Cluster 2 = {10, 12, 20, 30, 11, 25} 

Iteration 3: centroid l = 
2+3+4

3
 = 3 and 

                     centroid 2 = 
10+12+20+30+11+25 

5
= l8 

The distance between centroid l and each item in D: 

{1, 1, 7, 9, 0, 17, 27, 8, 22} 

The distance between centroid2 and each item in D: 

{16, 14, 8, 6, 15, 2, 12, 7, 7} 

According to the minimum distance between the centroids and each of 

the items, the clusters are: 

Cluster 1 = {2, 3, 4, 10} Since the item 10 is equally close to centroid l 

and Cluster2 = {12, 20, 30,11,25} 

Iteration 4: centroid l = 
2+3+4+10 

4
= 4.75 

 and centroid 2 =
12+20+30+11+25

5
= 19.6 

The distance between centroid l and each item in D: 
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{2.75, 0.75, 5.25, 7.25, 1.75, 15.25, 25.25, 6.75, 20.25} The distance 

between centroid2 and each item in D: 

{17.6, 15.6, 9.6, 7.6, 16.6, 0.4, 11.4, 8.6, 5.4} 

Cluster 1 = {2, 3, 4, 10, 11} Since the item 11 is equally close to centroid 

l 

and Cluster2 = {12, 20, 30,25} 

Iteration 5: centroid l = 
2+3+4+10+11 

6
= 5 

 and centroid 2 = 
12+20+30+25 

3
= 21.75 

The distance between centroid l and each item in D: 

{4, 24, 6, 3, 14, 24, 5, 19} 

The distance between centroid2 and each item in D: 

{19.75, 17.75, 11.75, 9.75, 1.75, 8.25, 10.75, 3.25} 

The clusters are: 

Cluster l = {2, 3, 4, 10, 11, 12} Since the item 12 is equally close to 

centroid l 

and Cluster 2 = {20, 30, 25} 

Iteration 6: centroid l = 
2+3+4+10+11+12 

6
= 7 

 and centroid 2 = 
20+30+25 

3
= 25 

The distance between centroid l and each item in D: 

{5, 3, 3, 5, 4, 13, 23, 6, 18} 

The distance between centroid2 and each item in D: 

{23, 21, 15, 13, 22, 5, 5, 14 , 0} 

The clusters are: 

Cluster l = {2, 3, 4, 10, 11, 12} and Cluster 2 = {20, 30, 25} 

We stop at this step because none of the items were relocated in iteration 

6 (iteration 5 and 6 are identical) 
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The result for this example, which is returned at the end of the process is: 

Cluster l = {2, 3, 4, 10, 11, 12} and Cluster2= {20, 30, 25}. 

 

Advantages of the K-means Algorithm: 

1.According to Han et al. [Han and Kamber (2006)], the K-means 

algorithm works well for compact clusters in which the clusters are well 

separated from one another. 

2.Moreover, the algorithm also works well for large datasets, since the 

computational complexity of the algorithm is O(n), where n is the number 

of objects present in the dataset [Jain  et al  (1999)], [Han and Kamber 

(2006)]. 

 

Limitations of the K-means Algorithm 

1- One of the disadvantages of the K-means algorithm is that it only 

considers numeric attribute types and is therefore not applicable to 

datasets with nominal or categorical attributes.                           

2-The performance of the K-means algorithm depends in part on the 

initial values selected as the cluster centroids in the initialization stage 

that may later affect the quality of the clusters.                                 

3-Dunham [Han and Kamber (2006)] also states that, the K-means 

algorithm is very sensitive to outliers.                                                      

4-Not suitable to discover clusters with non-convex shape, or clusters 

of very different size. [Aiello  et al ( 2007)].                                     

 

4.3.1.2  K-medoids method: 

          The most well-known K-medoids algorithms are PAM (Partitioning 

Around Medoids) [Kaufman and Rousseeuw (2005)]. The k-means 

method uses centroid to represent the cluster and it is sensitive to outliers. 

This means, a data object with an extremely large value may disrupt the 
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distribution of data. K-medoids method overcomes this problem by using 

medoids to represent the cluster rather than centroid. A medoid is the most 

centrally located data object in a cluster [ Berkhin ( 2002)].  

Here k data objects are selected randomly as medoids to represent k cluster 

and remaining all data objects are placed in a cluster having medoid nearest 

(or most similar) to that data object. After processing all data objects, new 

medoid is determined which can represent cluster in a better way and the 

entire process is repeated. Again all data objects are bound to the clusters 

based on the new medoids. In each iteration, medoids change their location 

step by step. Or in other words, medoids move in each iteration. This  

process is continued until no any medoid move. As a result, k clusters are 

found representing a set of n data objects. An algorithm for this method is 

given below.[ Han& Kamber (2006)]. 

The K- medoids  Algorithm 

Input: 

Input : ‘k’, the number of clusters to be partitioned;  ‘n’, the number of 

objects. 

Output: 

A set of ‘k’ clusters that minimizes the sum of the dissimilarities of all the 

objects to their nearest medoid. 

Algorithm: 

1.  Arbitrarily choose ‘k’ objects as the initial medoids; 

2. Repeat, 

a. Assign each remaining object to the cluster with the nearest medoid; 

b. Randomly select a non-medoid object; 

c. Compute the total cost of swapping old medoid object. 

d. If the total cost of swapping is less than zero, then perform that swap 

operation to form the new set of k- medoids. 

3.  Until no change. 
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The strengths and weaknesses of this algorithm are mentioned as 

below. 

Strengths: 

 More robust than k-means in the presence of noise and outliers; because a 

medoid is less influenced by outliers or other extreme values than a mean. 

Weaknesses: 

1. Relatively more costly 

2. Relatively not so much efficient. 

3. Need to specify k, the total number of clusters in advance. 

4. Result and total run time depends upon initial partition 

 

4.3.2 Hierarchical Methods 

In this section, we discuss another type of cluster analysis method known 

as the Hierarchical Clustering methods. A hierarchical method builds a 

hierarchy or a tree of clusters. 

The tree is also commonly referred to as a dendrogram [Dunham ( 2002)]. 

The root of a tree often contains all the data objects in one cluster, whereas 

the leaves of the tree usually contain each object in a single cluster. There 

are two variations of this method discussed in the literature: agglomerative 

or bottom-up approach and divisive or top-down approach [Han and 

Kamber (2006)], [Jain et al (1999`)], [ kandil (2011)]. 

 

4.3.2.1The agglomerative (bottom-up) 

In this approach, the algorithm starts from the bottom of the tree where 

each object has its own unique cluster. It gradually groups these clusters 

by recursively merging two or more similar clusters together. This process 
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is continued until all the clusters are merged into a single cluster (the root) 

or a given termination criterion is satisfied. 

4.3.2.1.1The steps for the agglomerative hierarchical clustering 

algorithm 

Given a proximity matrix 𝐷𝑛×𝑛= [𝑑𝑟𝑠], the steps for the agglomerative 

hierarchical clustering algorithm are as follows. 

1. Begin with n clusters, each containing only a single object. 

2. Search the dissimilarity matrix D for the most similar pair. Let the pair 

chosen be associated with element 𝑑𝑟𝑠so that object r and s are selected. 

3. Combine objects r and s into a new cluster (rs) employing some criterion 

and reduce the number of clusters by deleting the row and column for 

objects r and s. Calculate the dissimilarities between the cluster (rs) and all 

remaining clusters, using the criterion, and add the row and column to the 

new dissimilarity matrix. 

4. Repeat steps 2 and 3, (n − 1) times until all objects form a single cluster. 

At each step, identify the merged clusters and the value of the dissimilarity 

at which the clusters are merged. 

By changing the criterion in Step 3 above, we obtain several agglomerative 

hierarchical clustering methods. 

 

 

Agglomerative hierarchical clustering methods: 

 

4.3.2.1.1.Single Link (Nearest-Neighbor) Method 

This method also has been referred to as the elementary linkage, minimum 

method, and nearest neighbor cluster analysis (Johnson, 1967; Lance and 

Williams, 1967). 

Seeath (1957) and McQuitty (1957) proposed the signal link in which 

merges groups based on the minimum distance between the closest points 
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between two groups. Letting r represent any element in cluster R, r ∈ R, 

and s be any element in cluster S, s ∈ S, from the clusters in Step 3 of the 

agglomerative clustering algorithm, distances between R and S are 

calculated using the rule: 

𝑑(𝑅)(𝑆) = min{𝑑𝑟𝑠}       , 𝑟 ∈ 𝑅 𝑎𝑛𝑑 𝑠 ∈ 𝑆}         (4.3.1) 

 

Example4.3.2.1.1.there are 5 samples ( 21 x ), ( 112 x ), ( 03 x ), ( 64 x ), 

and ( 45 x ).  Each sample represents one cluster and the distance 

matrix D  is 

. 

54321

5

4

3

2

1

104156

10654

46112

155119

6429

xxxxx

x

x

x

x

x

































 == 𝑑𝑟𝑠D 

 

is updated  D), and the distance matrix 2),( 31 xxd=
mind( 3xand  
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as follows: 
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4.3) see Figure( },,,,{ 54321 xxxxxFinally, all samples are merged into one cluster  

 

Figure 4.3. An example for using single- linkage algorithm 

4.3.2.1.2.Complete Link (Farthest-Neighbor) Method 

A second agglomerative method, referred to as complete linkage analysis, 

maximum method, or furthest neighbor analysis. (Horn, 1943) proposed 

Complete Link Method. In the single link method, dissimilarities were 

replaced using minimum values. For the complete link procedure, 

maximum values are calculated instead. Letting r ∈ R and s ∈ S, where R 
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and S are two clusters, distances between clusters R and S are calculated 

using the rule 

𝑑(𝑅)(𝑆)= max {𝑑𝑟𝑠 ,  r ∈ R and s ∈ S}                    (4.3.2) 

 

Example 4.3.2.1.2To illustrate rule (4.3.2.), we consider the same 

dissimilarity matrix discussed in Example 4.3.2.1.1 
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1. Merge 
1x  and 3x  (

mind = 2),( 31 xxd ) represents the most similar 

objects. Using (4.3.2.), we replace minimum values with maximum values 

𝑑(𝑥1𝑥3)(𝑥2)= max { 𝑑𝑥1𝑥2
, 𝑑𝑥3𝑥2

}=max {9,11}=11 

𝑑(𝑥1𝑥3)(𝑥4)= max { 𝑑𝑥1𝑥4
, 𝑑𝑥3𝑥4

}=max {4,6}=6 

𝑑(𝑥1𝑥3)(𝑥5)= max { 𝑑𝑥1𝑥5
, 𝑑𝑥3𝑥5

}=max {6,4}=6 

so that the new dissimilarity matrix is 
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2x  and 
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as follows: 
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3.Merge },{ 31 xx  and 5x  (
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updated as follows: 
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4. Finally, all samples are merged into one cluster },,,,{ 54321 xxxxx  (see 

Figure 4.4). 

 

Figure 4.4. An example for using complete-linkage algorithm 

4.3.2.1.3.Average Link Method 

In the average link method, the distance between two clusters is 

defined as an average of dissimilarity measures. Sokal and Michener 

(1958) proposed the average linkage cluster method. When comparing 

two clusters of objects R and S, the single link and complete link methods 

of combining clusters depend only upon a single pair of objects within 

each cluster. Instead of using a minimum or maximum measure, the 
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average link method calculates the distance between two clusters using 

the average of the dissimilarities in each cluster [ Kandil (2011)]. 

                                  𝑑(𝑅)(𝑆) =
∑ ∑ 𝑑𝑟𝑠𝑠𝑟

𝑛𝑅𝑛𝑆
                          4.3.3                                    

where r ∈ R, s ∈ S, and 𝑛𝑅  and 𝑛𝑆  represent the number of objects in each 

cluster. Hence, the dissimilarities in Step 3 are replaced by an average of 

𝑛𝑅𝑛𝑆 dissimilarities between all pairs of elements r ∈ R and s ∈ S. 

 

Example 4.3.2.1.3.To illustrate rule (4.3.3.), we consider the same 

dissimilarity matrix discussed in Example 4.3.2. 

 

. 

54321

5

4

3

2

1

104156

10654

46112

155119

6429

xxxxx

x

x

x

x

x

































 == 𝑑𝑟𝑠D 

is updated  ), and the distance matrix =( and  Merge  -1

as follows: 

𝑑(𝑥1𝑥3)(𝑥2)= aver  { 𝑑𝑥1𝑥2
, 𝑑𝑥3𝑥2

}=aver {9,11}=10 

𝑑(𝑥1𝑥3)(𝑥4)= aver { 𝑑𝑥1𝑥4
, 𝑑𝑥3𝑥4

}=aver {4,6}=5 

𝑑(𝑥1𝑥3)(𝑥5)= aver { 𝑑𝑥1𝑥5
, 𝑑𝑥3𝑥5

}=aver {6,4}=5 

so that the new dissimilarity matrix is 

 

54231

5

4

2

31

},{

1015

105

155

5510

5

5

10

},{

xxxxx

x

x

x

xx



























 

 

), and the distance matrix is updated as 5),( 42 xxd=
mind( 

4xand  
2xMerge -2

follows:                                                                                                                           

1x 3x mind 2),( 31 xxd D
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54231

5

42

31

},{},{

5.12

5

5.12

5.7

5

5.7},{

},{

xxxxx

x

xx

xx























 

), and the distance matrix is 5)},,({ 531 xxxd=
mind(5xand  Merge -3

updated as follows: 

 

},{},,{

10

10},{

},,{
42531

42

531

xxxxx

xx

xxx












 

 

(see Figure  Finally, all samples are merged into one cluster -4

4.5). 

Figure 4. 5. An example for using average-linkage algorithm 

 

4.3.2.1.4 Centroid Method: 

In the centroid method, distance is defined as the distance between 

group centroids. In this method, the distance between two clusters R and 

S is defined as the Euclidean distance between the mean vectors (often 

called centroids) of the two clusters: 

𝑑(𝑅)(𝑆)= 𝑑�̅�𝑟�̅�𝑠
 =‖�̅�𝑟 − �̅�𝑠‖ 2         (4.3.4) 

Where 

(i) �̅�𝑅  is the mean vectors for the observation vectors in R,  

},{ 31 xx

},,,,{ 54321 xxxxx
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(ii) �̅�𝑆  is the mean vectors for the observation vectors in S 

 

�̅�𝑅 =
∑ 𝑦𝑟𝑟

𝑛𝑟
=

[
 
 
 
 
�̅�𝑟1

�̅�𝑟2.
.
.

�̅�𝑟𝑝]
 
 
 
 

       and      �̅�𝑆 =
∑ 𝑦𝑠𝑠

𝑛𝑠
=

[
 
 
 
 
�̅�𝑠1

�̅�𝑠2.
.
.

�̅�𝑠𝑝]
 
 
 
 

          (4.3.5) 

 

 

The two clusters with the smallest distance between centroids are merged

 at each step. After two clusters R and S are joined, the centroid of the 

new cluster RS is given by the weighted average 

�̅�𝑅𝑆=
𝑛𝑅�̅�𝑅+𝑛𝑆�̅�𝑆

𝑛𝑅+𝑛𝑆
                                          (4.3.6)         

 

4.3.2.1.5. Ward’s Method: 

Ward’s method, also called the incremental sum of squares method, 

uses the within cluster (squared) distances and the between-cluster 

(squared) distances (Ward 1963, Wishart 1969a). If RS is the cluster 

obtained by combining clusters R and S, then the sum of within-cluster 

distances (of the items from the cluster mean vectors) are: 

SSER = ∑ (𝑦𝑖 − �̅�𝑅 )ˊ(𝑦𝑖 − �̅�𝑅 )
𝑛𝑅
𝑖=1                            (4.3.7) 

 

SSES = ∑ (𝑦𝑖 − �̅�𝑆)
ˊ(𝑦𝑖 − �̅�𝑆)

𝑛𝑆
𝑖=1                              (4.3.8) 

 

SSERS = ∑ (𝑦𝑖 − �̅�𝑅𝑆)
ˊ(𝑦𝑖 − �̅�𝑅𝑆)

𝑛𝑅𝑆
𝑖=1                         (4.3.9) 

Where 

 

(i)            𝑛𝑟𝑠 = 𝑛𝑟 + 𝑛𝑠   , 

(ii)              �̅�𝑅𝑆=
𝑛𝑅�̅�𝑅+𝑛𝑆�̅�𝑆

𝑛𝑅+𝑛𝑆
, 



 

 

 

Chapter four 
ffffffببببffou

Cluster analysis 

117 

(iii) 𝑛𝑟 is the numbers of points in R 

(iv) 𝑛𝑠 is the numbers of points in S 

(v)             𝑛𝑟𝑠  is the numbers of points in RS 

Since these sums of distances are equivalent to within-cluster sums of 

squares, they are denoted by SSER , SSES, and SSERS . 

Ward’s method joins the two clusters R and S that minimize the increase 

in SSE, defined as 

𝐼𝑅𝑆 = 𝑆𝑆𝐸𝑅𝑆 − (𝑆𝑆𝐸𝑅 + 𝑆𝑆𝐸𝑆)                                    (4.3.10) 

It can be shown that the increase 𝐼𝑅𝑆 in (4.3.10) has the following two 

equivalent forms: 

 

𝐼𝑅𝑆 = 𝑛𝑅(�̅�𝑅 − �̅�𝑅𝑆)
ˊ(�̅�𝑅 − �̅�𝑅𝑆) + 𝑛𝑠(�̅�𝑆 − �̅�𝑅𝑆)

ˊ(�̅�𝑆 − �̅�𝑅𝑆)        (4.3.11) 

=
𝑛𝑅𝑛𝑆

𝑛𝑅+𝑛𝑆

(�̅�𝑅 − �̅�𝑆)
ˊ(�̅�𝑅 − �̅�𝑆)                                      (4.3.12) 

Where         

SSERS = ∑ (𝑦𝑖 − �̅�𝑅𝑆)
ˊ(𝑦𝑖 − �̅�𝑅𝑆)

𝑛𝑅𝑆
𝑖=1                             

 SSERS   =  ∑ 𝑦𝑖
ˊ𝑛𝑅𝑆

𝑖=1 𝑦𝑖   −  ∑ 𝑦𝑖
ˊ�̅�𝑅𝑆

𝑛𝑅𝑆
𝑖=1 − ∑ �̅�ˊ𝑅𝑆𝑦𝑖

𝑛𝑅𝑆
𝑖=1 + ∑ �̅�ˊ𝑅𝑆

𝑛𝑅𝑆
𝑖=1 �̅�𝑅𝑆 

Since �̅�𝑅𝑆 =
∑ 𝑦𝑖

𝑛𝑅𝑆
𝑖=1

𝑛𝑅𝑆
 

SSERS     = ∑ 𝑦𝑖
ˊ𝑛𝑅𝑆

𝑖=1 𝑦𝑖   −𝑛𝑅𝑆�̅�ˊ𝑅𝑆�̅�𝑅𝑆 −𝑛𝑅𝑆�̅�ˊ𝑅𝑆�̅�𝑅𝑆 +𝑛𝑅𝑆�̅�ˊ𝑅𝑆�̅�𝑅𝑆   

SSERS    = ∑ 𝑦𝑖
ˊ𝑛𝑅𝑆

𝑖=1 𝑦𝑖   −𝑛𝑅𝑆�̅�ˊ𝑅𝑆�̅�𝑅𝑆. 

Similarly  

SSER   = ∑ 𝑦𝑖
ˊ𝑛𝑅

𝑖=1 𝑦𝑖  −𝑛𝑅�̅�ˊ𝑅�̅�𝑅 . 

SSES    = ∑ 𝑦𝑖
ˊ𝑛𝑆

𝑖=1 𝑦𝑖   −𝑛𝑆 �̅�ˊ𝑆�̅�𝑆.  

Thus 
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𝐼𝑅𝑆 = 𝑆𝑆𝐸𝑅𝑆 − (𝑆𝑆𝐸𝑅 + 𝑆𝑆𝐸𝑆)                                     

𝐼𝑅𝑆   = ∑ 𝑦𝑖
ˊ𝑛𝑅𝑆

𝑖=1 𝑦𝑖  −𝑛𝑅𝑆�̅�ˊ𝑅𝑆�̅�𝑅𝑆 −∑ 𝑦𝑖
ˊ𝑛𝑅

𝑖=1 𝑦𝑖   +𝑛𝑅�̅�ˊ𝑅�̅�𝑅 − ∑ 𝑦𝑖
ˊ𝑛𝑆

𝑖=1 𝑦𝑖             

           +𝑛𝑆 �̅�ˊ𝑆�̅�𝑆  

𝐼𝑅𝑆  =  𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑆�̅�ˊ𝑆 �̅�𝑆 −𝑛𝑅𝑆�̅�ˊ𝑅𝑆�̅�𝑅𝑆 

Now we Show that when the right side of (4.3.11) is expanded, it reduces 

to this same expression 

 

𝐼𝑅𝑆 = 𝑛𝑅(�̅�𝑅 − �̅�𝑅𝑆)
ˊ(�̅�𝑅 − �̅�𝑅𝑆) + 𝑛𝑠(�̅�𝑆 − �̅�𝑅𝑆)

ˊ(�̅�𝑆 − �̅�𝑅𝑆)                        

𝐼𝑅𝑆=𝑛𝑅�̅�ˊ𝑅�̅�𝑅 − 𝑛𝑅�̅�ˊ𝑅�̅�𝑅𝑆 − 𝑛𝑅�̅�ˊ𝑅𝑆�̅�𝑅 + 𝑛𝑅�̅�ˊ𝑅𝑆�̅�𝑅𝑆 + 𝑛𝑆 �̅�ˊ𝑆�̅�𝑆 −

   𝑛𝑆 �̅�ˊ𝑆�̅�𝑅𝑆 − 𝑛𝑆 �̅�ˊ𝑅𝑆�̅�𝑅 + 𝑛𝑆 �̅�ˊ𝑅𝑆�̅�𝑅𝑆 

𝐼𝑅𝑆= 𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑆 �̅�ˊ𝑆�̅�𝑆 − 2(𝑛𝑅�̅�ˊ𝑅+𝑛𝑆 �̅�ˊ𝑆) �̅�𝑅𝑆+ (𝑛𝑅 + 𝑛𝑆)�̅�ˊ𝑅𝑆�̅�𝑅𝑆 

𝐼𝑅𝑆= 𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑆 �̅�ˊ𝑆�̅�𝑆 − 2(𝑛𝑅+𝑛𝑆)�̅�ˊ𝑅𝑆 �̅�𝑅𝑆+ (𝑛𝑅 + 𝑛𝑆)�̅�ˊ𝑅𝑆�̅�𝑅𝑆 

𝐼𝑅𝑆= 𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑆 �̅�ˊ𝑆�̅�𝑆 − (𝑛𝑅+𝑛𝑆)�̅�ˊ𝑅𝑆 �̅�𝑅𝑆 

 

Substitute �̅�𝑅𝑆=
𝑛𝑅�̅�𝑅+𝑛𝑆�̅�𝑆

𝑛𝑅+𝑛𝑆
  

 

(𝑛𝑅+𝑛𝑆)�̅�ˊ𝑅𝑆 �̅�𝑅𝑆 =(𝑛𝑅+𝑛𝑆) 
(𝑛𝑅�̅�𝑅+𝑛𝑆�̅�𝑆) ˊ

(𝑛𝑅+𝑛𝑆)

(𝑛𝑅�̅�𝑅+𝑛𝑆�̅�𝑆)

(𝑛𝑅+𝑛𝑆)
  

                            = 
𝑛2

𝑅�̅�ˊ𝑅 �̅�𝑅+𝑛𝑅𝑛𝑆�̅�ˊ𝑅 �̅�𝑆+𝑛𝑅𝑛𝑆�̅�ˊ𝑆 �̅�𝑅+𝑛2
𝑆�̅�ˊ𝑆 �̅�𝑆

𝑛𝑅+𝑛𝑆
      (I) 

  

Multiplying 𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑆 �̅�ˊ𝑆�̅�𝑆  𝑏𝑦 
𝑛𝑅+𝑛𝑆

𝑛𝑅+𝑛𝑆
 

𝑛𝑅+𝑛𝑆

𝑛𝑅+𝑛𝑆
𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑆�̅�ˊ𝑆�̅�𝑆 =

𝑛2
𝑅�̅�ˊ𝑅 �̅�𝑅+𝑛𝑆𝑛𝑅�̅�ˊ𝑅�̅�𝑅+𝑛𝑅𝑛𝑆�̅�ˊ𝑆�̅�𝑆+𝑛2

𝑆�̅�ˊ𝑆  �̅�𝑆

𝑛𝑅+𝑛𝑆
 (II) 

𝐼𝑅𝑆= 𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑆 �̅�ˊ𝑆�̅�𝑆 − (𝑛𝑅+𝑛𝑆)�̅�ˊ𝑅𝑆 �̅�𝑅𝑆 

From I and II 
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𝐼𝑅𝑆=

𝑛2
𝑅�̅�ˊ𝑅 �̅�𝑅+𝑛𝑆𝑛𝑅�̅�ˊ𝑅�̅�𝑅+𝑛𝑅𝑛𝑆�̅�ˊ𝑆�̅�𝑆+𝑛2

𝑆�̅�ˊ𝑆  �̅�𝑆−𝑛2
𝑅�̅�ˊ𝑅 �̅�𝑅−𝑛𝑅𝑛𝑆�̅�ˊ𝑅 �̅�𝑆−𝑛𝑅𝑛𝑆�̅�ˊ𝑆  �̅�𝑅−𝑛2

𝑆�̅�ˊ𝑆  �̅�𝑆

𝑛𝑅+𝑛𝑆
 

𝐼𝑅𝑆 =
1

𝑛𝑅 + 𝑛𝑆

𝑛𝑆𝑛𝑅�̅�ˊ𝑅�̅�𝑅 + 𝑛𝑅𝑛𝑆 �̅�ˊ𝑆�̅�𝑆 + −𝑛𝑅𝑛𝑆�̅�ˊ𝑅  �̅�𝑆 − 𝑛𝑅𝑛𝑆�̅�ˊ𝑆 �̅�𝑅  

𝐼𝑅𝑆 =
𝑛𝑆𝑛𝑅

𝑛𝑅+𝑛𝑆  
 (�̅�𝑅 -�̅�𝑆)ˊ(�̅�𝑅 -�̅�𝑆)           (4.3.12),   

 

Thus by (4.3.12), minimizing the increase in SSE is equivalent to 

minimizing the between-cluster distances. 

 If R consists only of 𝑦𝑖  (𝑛𝑅 = 1, �̅�𝑅 = 𝑦𝑖) and S consists only of 𝑦𝑖   

(𝑛𝑆 = 1, �̅�𝑆 = 𝑦𝑗), then 

𝑆𝑆𝐸𝑅 and 𝑆𝑆𝐸𝑆 are zero, and (4.3.10) and (4.3.12) reduce to 

  

𝐿𝑅𝑆 = 𝑆𝑆𝐸𝑅𝑠 =
1 × 1

1 + 1
(𝑦𝑖 − 𝑦𝑗)

ˊ
(𝑦𝑖 − 𝑦𝑗) =

1

2
𝑑2(𝑦𝑖 ,𝑦𝑗) 

𝐿𝑅𝑆 = 𝑆𝑆𝐸𝑅𝑠 =
1

2
(𝑦𝑖 − 𝑦𝑗)

ˊ
(𝑦𝑖 − 𝑦𝑗) =

1

2
𝑑2(𝑦𝑖 ,𝑦𝑗)      (4.3.12)  

 

 

4.3.2.2The divisive hierarchical (top-down):                                                              

Divisive algorithms begin with just only one cluster that contains all 

sample data. Then, the single cluster splits into 2 or more clusters that 

have higher dissimilarity between them until the number of clusters 

becomes number of samples or as specified by the user. [Kandil ( 2011)]. 

Two clusters are merged when the distance is low and a cluster is split 

into smaller clusters when the distance is large (when the elements are not 

close enough).The following algorithm is one kind of divisive algorithms 

using splinter party method. 
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Divisive algorithm using splinter party method [Hui-Chuan 

(2009)]:    

1. Start with just only one cluster.  That is, all samples in this one     

cluster.  

2. Repeat step 3, 4, 5, 6 until cluster number is the number of samples 

or   what we want.                                                                                               

3. Calculate diameter of each cluster.  Diameter is the maximal 

distance between samples in the cluster.  Choose one cluster R    

having maximal diameter of all clusters to split.   

4. Find the most dissimilar sample   from cluster R.  Let   depart from 

the original cluster R to form a new independent cluster S (now 

cluster R doesn’t include sample).  Assign all members of cluster R 

to 𝑀𝑅 .           

5.      Repeat 6 until members of cluster R and S don’t change.   

6.     Calculate similarities from each member of 𝑀𝑅  to cluster R and 

S, and let the member owning the highest similarities in 𝑀𝑅  move to 

its similar cluster R or S.  Update members of R and S.                                                                                                                                       

 

Exampel 4.3.2.2we take a simple example to describe the method above.  

First, the distance matrix D  of 5 samples 54321 ,,,, xxxxx  is 

 

54321

5

4

3

2

1

3589

34910

5456

8952

91062

xxxxx

x

x

x

x

x

































. 

 

Our processing steps are as follows: 
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1- Because there is only one cluster, this cluster has maximal diameter.  For a 

start, we split this cluster. 

Calculate average distances from one sample to the others.  For example, the -2

, 75.64/)91062( is  5xand  
4x, 3x, 

2xto  
1xaverage distance from 

and the others: 

.25.64/)3589(:

,5.64/)34910(:

,54/)5456(:

,64/)8952(:

5

4

3

2









x

x

x

x

 

 

Sample 
1x  has maximal average distance, so extract 

1x  from the cluster.  Now we 

have 2 clusters: },,,{ 5432 xxxx  and }{ 1x . 

 },,,{ 5432 xxxxto clusters  5xand  
4x, 3x, 

2xFind average distances from -1

.}{ 1xand  

5

4

3

2

x

x

x

x

}{},,,{

9

10

6

2

33.5

33.5

67.4

33.7
15432 xxxxx



















 

The distance from 
2x  to cluster }{ 1x  is minimum, so put 

2x  into cluster }{ 1x . Now 

clusters are updated to },,{ 543 xxx  and },{ 21 xx .  Repeat step 6 of the algorithm to 

check if members of each cluster are updated. 

 

5

4

3

2

x

x

x

x

},{},,{

5.8

8.9

5.5

2

4

5.3

5.4

33.7
21543 xxxxx



















 

 

The distance from 
2x to cluster },{ 21 xx  is also minimum and cluster members don’t 

change again.  Go to step 3 of the algorithm.  Now there are 2 clusters },{ 21 xx  and 

},,{ 543 xxx . 
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is: },{ 21 xxThe diameter of the cluster  

)max(}),({ 2121 xxxxdiameter  =2. 

The diameter of cluster },,{ 543 xxx  is 

5),,max(}),,({ 545343543  xxxxxxxxxdiameter . 

 

1-We choose the cluster },,{ 543 xxx  to split (has maximal diameter of all clusters). 

Calculate average distances from one sample to the others in cluster 

.},,{ 543 xxx 

 

42/)35(:

5.32/)34(:

5.42/)54(:

5

4

3







x

x

x

 

 

So split },,{ 543 xxx  into }{ 3x  and },{ 54 xx .  The average distances from 
4x  and 5x  to 

clusters },{ 54 xx  and }{ 3x  are: 

 

354

5

4

},{

5

4

3

3

xxx

x

x








 

 

Because minimum distance is 3, cluster members of each cluster don’t update.  Go to 

step 3 of the algorithm. 

.  Their diameters are 2, 0, },{ 54 xx, and }{ 3x, },{ 21 xxNow we have 3 clusters -1

, don’t think about this }{ 3xand 3. Because there is only one sample in cluster 

.                                                    },{ 21 xxcluster. We decide split the cluster  

.  Because cluster members of each cluster don’t }{ 2xand  }{ 1xinto  },{ 21 xxSplit -2

update, go to step 3.                                                                                     

 },{ 54 xx.  Only the cluster },{ 54 xxand  }{ 3x, }{ 2x,}{ 1xNow we have 4 clusters -3

},{ 54 xxhas more than one sample and have maximal diameter, so split  
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.  Each sample represents one cluster, so stop }{ 5xand  }{ 4xinto  },{ 54 xxSplit -4

(see Figure 4.6).                                                                                                 

 

 

                                       

                     Figure 4.6. An example for hierarchical divisive algorithm 

 

Advantages of the Hierarchical Clustering Methods: 

(i) Hierarchical methods are suitable for datasets that possess natural 

nesting relationships between the clusters. Examples of such 

datasets include datasets from biology and animal taxonomies 

[Dunham (2002)]. 

(ii) Moreover, since the distance or similarity is presented through a 

matrix to these algorithms, the algorithms are able to handle 

different attribute types [Berkhin ( 2002)]. 

 

 

 

Limitations of the Hierarchical Clustering Methods: 

(i) One of the weaknesses of the hierarchical methods is that, once a 

cluster is formed, the objects in the clusters may not be relocated to 

improve the results. As such, unlike the K-means algorithm where 

},,,,{ 54321 xxxxx

},{ 21 xx },,{ 543 xxx

1x 2x
3x },{ 54 xx

4x
5x

divisive step 1

divisive step 2

divisive step 3

divisive step 4
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objects are iteratively relocated to improve the result, the 

hierarchical algorithms lack such possibility. 

(ii) The algorithms are also sensitive to outliers [Xu and Wunsch  

(2005)]. Dunham (2002) also noted that, due to the time and space 

complexity of these algorithms, they may not be suitable for large 

datasets. 

 

4.3.3 Density-based Methods: 

          Unlike the hierarchical and partitional cluster analysis algorithms, 

which consider the distance or similarity between the objects to find the 

clusters, density-based methods are based on the notion of density. 

According to Dunham [Dunham ( 2002)], the term density is defined as 

the minimum number of objects located within a certain distance of one 

another. Thus, the clusters are represented by the dense areas of the data 

objects and are usually separated by the areas with low density. In this 

approach, the clusters may take any arbitrary shape and grow in any 

direction, as long as the density in the neighboring area exceeds a certain 

threshold [Han and Kamber (2006)]. Examples of algorithms from this 

family are: DBSCAN (Density-Based Spatial Clustering Algorithm with 

Noise) [Ester and Xu (1996)] and DENCLUE (DENsitybased 

CLUstEring) [Laflin (1998)]. As the name implies, the DBSCAN 

algorithm is suitable for spatial datasets with noise. The algorithm also 

discovers clusters of arbitrary shape [Han and Kamber (2006)]. 

However, this algorithm is very sensitive to the choice of user-defined 

parameters (e.g. the radius of the neighborhood) [Han and Kamber 

(2006)]. The DENCLUE algorithm is suitable for high dimensional 

datasets. Similar to the DBSCAN algorithm, this algorithm also discovers 

arbitrary shaped clusters and handles datasets with large amount of noise 

[Han and Kamber (2006)]. 



 

 

 

Chapter four 
ffffffببببffou

Cluster analysis 

125 

 

4.3.4 Grid-based Methods: 

          In the Grid-based cluster analysis [Han and Kamber (2006)] 

methods, the entire data space is first divided into a finite number of cells 

that form a grid structure. The cluster analysis is then performed on this 

grid data, instead of the original data points. Since the number of cells in  

the grid data is usually much less than the number of original data points, 

the computation and processing time of this algorithm are relatively faster 

than many other cluster analysis algorithms. The algorithms from this 

family are mostly suitable for spatial datasets. STING (STatistical 

INformation Grid) [Wang et al (1997)], WaveCluster [Sheikholeslami et 

al (1998)], and CLIQUE [Agrawal et al (1998)] are an example of 

algorithms based on this method. The STING algorithm manipulates the 

statistical information (e.g. count, maximum, minimum, and standard 

deviation) of the grid cells to process the queries. The algorithm is query-

independent as the statistical information regarding the attributes are pre-

computed and stored in each cell. STING is also very efficient. Moreover, 

when a given dataset is updated, this algorithm is able to perform 

incremental updates without re-computing all the statistical information 

[Han and Kamber (2006)]. However, the user-specific parameters (e.g. 

the number of grids and number of layers) need to be provided by the users 

and therefore the selection of parameters may have impact on the end 

result. The WaveCluster algorithm, in contrast, applies a signal processing 

technique called wavelet transform, to find the clusters. More information 

regarding wavelet transform and WaveCluster are presented in 

[Sheikholeslami et al (1998)], [Han and Kamber (2006)]. The algorithm 

is not sensitive to outliers, discovers clusters of arbitrary shapes, and 

performs well for large datasets. However, one of the drawbacks of this 

algorithm is that it may only be applied to low-dimensional datasets. On 
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the other hand, the CLIQUE algorithm, which integrates density-based and 

grid-based algorithms together, is suitable for large, highly dimensional 

datasets. 

 

4.3.5 Model-based Methods: 

Model-based approaches assume that all the data is generated by a mixture 

of underlying statistical distributions. For example, the EM (Expectation-

Maximization) algorithm is a popular model-based approach that performs 

expectation-maximization analysis based on statistical modeling [Han and 

Kamber (2006)]. The COBWEB and SOM (Self-Organized Map) 

algorithms also fall into this category, where the former is a conceptual 

learning algorithm and the latter is a neural network-based algorithm. A 

detailed discussion of these algorithms is presented in [Han and Kamber 

(2006)]. 

 

4.3.6 Clustering High Dimensional Data: 

          Highly dimensional datasets consist of several hundreds or even 

thousands of attributes. For instance, objects in a text dataset are usually 

regarded as a collection of documents and each document consists of 

hundreds or even thousands of words and terms. Thus, the attributes for 

this type of datasets are the collection of these words and terms gathered 

from the documents. In such cases, the previously discussed clustering 

algorithms may not work well as the data become very sparse with the 

increase of the number of dimensions. As a result, when the similarity 

between the data points is calculated, the result is usually a very small value 

which may not contribute to the computation. Moreover, as Han and 

Kamber (2006) noted, the average density of these points is also likely to 

be very low. Therefore, new or modified algorithms that handle the 

problem of high dimensionality are necessary. Two such methods for 
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clustering high-dimensional datasets are Subspace Clustering and Frequent 

Pattern-based Clustering. The subspace clustering algorithms such as 

CLIQUE and PROCLUS, tend to find the clusters from a subset of 

dimensions of the original set of attributes. On the other hand, the frequent 

pattern-based clustering algorithms search for frequently occurring 

patterns from the dataset and use these patterns to find the clusters [Han 

and Kamber (2006)]. With a growing number of domains containing high 

dimensional data, performing cluster analysis on highly dimensional 

datasets has become challenging. Therefore, special care is needed to 

successfully perform cluster analysis on this type of datasets. 

 

4.3.7 Constraint-based Clustering 

The Constraint-based methods consist of cluster analysis algorithms 

that heavily rely on user guidance. Users provide various constraints  and 

information to the algorithms so that the clusters may be generated based 

on the preferences given by the users. Yin et al. (2005) proposed one such 

user-guided clustering algorithm called CrossClus. The algorithm is 

suitable for multi-relational datasets. The algorithm starts with selecting a 

set of relevant features from multiple relations to construct a single object 

type, based on the user interest and domain specific knowledge. Next, the 

K-medoids based algorithm, CLARANS is applied to the selected features 

to find the clusters. 
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V. Application Study and Results 
  

 

5.1    Overview of the study  

Multidimensional scaling and cluster analysis are widely used in 

marketing research for positioning of different brands of the 

companies. It would be desired and beneficial for any company to 

know how its brand of products is rated among public when 

compared with other similar competing brands. (Verma (2013). 

Multidimensional scaling can create a visual presentation of the 

subjective dimensions that are not directly shown in the data. By 

showing these objects visually on a map, it will be easier for 

public to associate close together objects as similar or close in 

terms of preference. 

Cluster analysis can be used to segregate all the brands of certain product 

into some clusters, that assist the companies in identifying their current 

location within the market and who their closest rivals are. This helps the 

companies to pay attention and focus on their marketing activities of their 

brands in the same cluster and try to modify it to make it much better. 

5.2  Study Data. 

The data was collected by some questionnaires which were distributed 

among different car exhibitions found in the city of Banha, the sample size 

was a 20 customers. The owners of the car exhibitions were asked to give 

these questionnaires to their customers. The set of cars used in the 

questionnaires and in our experiment is presented in Table 5.1. 

The Twenty customers were asked to rate the 10 cars by showing the cards 

bearing the name of a pair of cars. All possible pair of cars were shown, 

and the customers were asked to rate their preferences of one car over the 
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other on a scale of 100 points. If the customer perceived that the two cars 

were completely dissimilar, a score of 0 was given, and if the two cars were 

exactly similar, a score of 100 was given.  

 

 Object 

1 

2 
3 
4 

5 
6 

7 
8 

9 
10 

Kia Cerato 

Chevrolet Aveo 
Renault Fluence 
Toyota Corolla 

Mitsubishi Lancer 
Geely Emgrand 

Hyundai Elantra 
Speranza Tiggo 

Nissan Sunny 
Peugeot 208 

  
 

                                        Table 5.1 Cars’ object set 

 

After obtaining the similarity matrix for each consumer, the average of 

these similarities was calculated for each pair of objects to make the final 

similarity matrix (the input data).  

 

To summarize, the data produced from the experiment are consisting of: 

A collection of 20 proximity matrices, one for each consumer. Each 

proximity matrix is a 10 x 10 symmetric matrix in which cell 𝑠𝑖𝑗 contains 

the numerical value of the similarity between cars i and j as judged by that 

customer. Only one similarity was obtained for each object pair from each 

customer. These data are presented in Appendix A. 

An average similarity matrix over all subjects was obtained by averaging 

the similarity for each object pair over all subjects. This matrix (presented 

in Table 5.2) is used as SPSS input data.  

 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=0CD8QFjAG&url=http%3A%2F%2Fsa-ar.chevroletarabia.com%2Fcars%2Faveo%2Fmodel-overview.html&ei=0ByXVNflO434yQSns4GICA&usg=AFQjCNHQ0dF1dvi4eOAbuHpj_55VgyMwvw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCcQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMitsubishi_Lancer&ei=BSaXVOLhGc2yyATzqIKgAw&usg=AFQjCNHoT-WlObQQsLwXOFem7C5nKhaeYQ
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0CFMQFjAJ&url=http%3A%2F%2Feg.hatla2ee.com%2Far%2Fcar%2Fkia%2Fcerato&ei=UySXVKX4Gcm0yATo7oGoAw&usg=AFQjCNE-a0lIzdWq3We4549ldUmCADq69Q
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0CFMQFjAJ&url=http%3A%2F%2Feg.hatla2ee.com%2Far%2Fcar%2Fkia%2Fcerato&ei=UySXVKX4Gcm0yATo7oGoAw&usg=AFQjCNE-a0lIzdWq3We4549ldUmCADq69Q
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDEQFjAF&url=http%3A%2F%2Feg.hatla2ee.com%2Far%2Fcar%2Frenault%2Ffluence&ei=jiSXVL7ABMX9yQSBi4G4Cw&usg=AFQjCNHdVohp8TVp6HyBJf4oWAbXIkbDKg
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 kia Chevrolet Renault Toyota Mitsubishi Geely Hyundai Speranza Nissan Peugeot 

kia 100.0 34.8 79.2 86.0 76.3 63.3 57.9 62.5 65.6 26.0 

Chevrolet 34.8 100.0 54.4 56.0 30.5 40.7 86.0 80.7 23.6 60.9 

Renault 79.2 54.4 100.0 70.5 51.2 37.8 77.7 71.6 69.4 70.0 

Toyota 86.0 56.0 70.5 100.0 66.3 90.0 50.1 88.6 6.3 89.4 

Mitsubishi 76.3 30.5 51.2 66.3 100.0 35.4 76.0 67.5 22.6 63.1 

Geely 63.3 40.7 37.8 90.0 35.4 100.0 77.1 54.1 35.1 67.9 

Hyundai 57.9 86.0 77.7 50.1 76.0 77.1 100.0 66.1 76.8 59.3 

Speranza 62.5 80.7 71.6 88.6 67.5 45.1 66.1 100.0 71.3 33.6 

Nissan 65.6 23.6 69.4 66.2 22.6 35.1 76.8 71.3 100.0 59.3 

Peugeot 26.0 60.0 70.0 89.4 63.1 67.9 59.3 33.6 59.3 100.0 

                   Table 5.2 Average similarity Matrix for Cars 

 

         Using Green, Carmone and Smiths (1989) recommendations, since 

there are 10 brands 2 dimensions are most appropriate.  

The data file was prepared before using SPSS to generate the outputs  in 

multidimensional scaling. The data was exported directly into the output 

window of SPSS. In the data file the ten variables were defined as ordinal 

because the scores were representing the dissimilarity ratings. After 

defining the variable names and their labels, the command sequence 

(Analyze – Scale - Multidimensional Scaling) was selected on the SPSS 

program. In Model tab, two dimensional solution was investigated along 

with the stress value as 0.0367. These two dimensions were the attributes 

of these brands drawn through knowledge of the market based on the 

surveys of the customers. Thus, the two dimensions were named as 

follows: 

Dimension 1: Stylish 

Dimension 2: Problematic 

In terms of the perceptual map shown in figure 1 below, the first dimension 

seems to correspond with Style ranging from less stylish (on the left) to 

more stylish (on the right) and dimension 2 seems to correspond with 
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problems in the car ranging from more problematic (on the top) to less 

problematic (on the bottom). 

 

The opposites of car brand characteristics have been identified which 

seem to be linked with the dimensions. The dimensions seem to be 

strongly based on performance and style of the car. If the dimensions 

are correct then the following cars on the right side of Dimension 1 in 

the Euclidean Distance Model should be more stylish and the cars on 

the bottom of Dimension 2 are less problematic with higher 

performance and safety. 

 

 

 

 

                                                          Dimension 1 

 

 

 

                    

 

 

 

 

 Figure 1 showing the two dimensions used in our study. 
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5.3 Results:   

5.3.1 Basic MDS analysis of cars data 

Non-metric solutions were generated using the SPSS program by use the 

average similarity matrix for cars as input data. The results of SPSS were: 

Distance matrix for cars 

 

 Kia Chevrolet Renault Toyota Mitsubishi Geely Hyundai Speranza Nissan Peugeot 

Kia 0          

Chevrolet 0.889 0         

Renault 1.364 0.765 0        

Toyota 1.198 0.693 1.413 0       

Mitsubishi 1.094 0.307 0.473 0.942 0      

Geely 1.004 0.681 0.413 1.373 0.52 0     

Hyundai 0.599 0.928 1.633 0.827 1.225 1.375 0    

Speranza 0.703 1.128 1.153 1.697 1.149 0.744 1.289 0   

Nissan 0.858 0.175 0.634 0.866 0.239 0.506 1.008 0.99 0  

Peugeot 0.293 0.961 1.26 1.404 1.091 0.862 0.889 0.412 0.876 0 

 

Final Stress value = 0 .0367 

The MDS solution was achieved through an iterative procedure, in which 

an initial solution is established. Further iterations attempt to improve this 

solution in the context of a stress criterion.  
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2 dimensional Object Space for cars Data: 

 

 

Final coordinates for cars data in 2 dimensional : 

 

 

  

Dimensions 

1 2 

Kia 0.272 0.5 

Chevrolet 0.043 -0.318 

Renault -0.752 -0.037 

Toyota 0.776 -0.484 

Mitsubishi -0.253 -0.5 

Geely -0.484 -0.194 

Hyundai 0.787 0.279 

Speranza -0.356 0.687 

Nissan -0.045 -0.522 

Peugeot 0.012 0.59 
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By looking to 2 dimensional Object Space for cars data, it may be 

concluded that the car brands like Peugeot, Speranza and Kia having more 

problems than other brands of similar cars while Toyota, Nissan and 

Mitsubishi have the lowest kind of problems. Brands like Toyota and 

Hyundai are similar to each other in terms of style and more stylish than 

the other cars. 

5.3.2   Cars cluster analysis: 

 
K-means cluster solutions were generated using the SPSS program by use 

the average similarity matrix for cars as input data. The results of SPSS 

were: 

As a further way to analyze how consumers perceive the 10 cars brands in 

the study, Cluster analysis was used based on the stimulus coordinates to 

put the cars brands in clusters, this will assist the companies in identifying 

there current location within the market and who their closest rivals are. 

This may mean the brands should focus closer on the marketing activities 

of the brands in the same cluster.  

From the Euclidean distance model it seems reasonable to identify 4 

possible clusters; Cluster analysis will be used through SPSS to check if 

these 4 clusters are correct or if other clusters are more suitable. 

The 4 cluster analysis offers a good solution and this has allowed the profile 

of the four following groups. 

Clusters 

1 Kia, Speranza and peugeot 

2 Geely, Chevrolet, Nissan and Mitsubishi 

3 Renault 

4 Hyundai and Toyota 
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Cluster Profiles: 
 
Cluster I: 

This cluster contains Kia, Speranza and peugeot. They are perceived to be 

more problematic, moderate in style. Peugeot and Kia are closer to each 

other within the group and Speranza is more independent within the cluster. 

It can be seen in this cluster, how Kia is making its move away from 

Speranza and Peugeot to be close to cluster 4.   

 

Cluster II: 

It’s interesting to see that Geely has somehow differentiated itself from 

other cars (Chevrolet, Nissan and Mitsubishi) within the same cluster. 

Geely has sufficiently differentiated itself from the expected competition 
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of other companies by modifying the style. Out of Cluster 2 Nissan and 

Mitsubishi are the most differentiated, this is because they have less 

mechanical problems than other cars in the same cluster. Chevrolet and 

Nissan are in excellent position in the cluster and map as they are moderate 

stylish and less problematic when compared with the others.  

 

Cluster III: 

This cluster contains only Renault. It has firmly established itself as the 

low cost choice, this seems to be a good position, although seen as a low 

quality car as it is moderate problematic and less stylish than the other cars. 

Geely and Speranza seem to be close rivals in other clusters in terms of 

style. Geely in cluster II seems to be less problematic and more stylish than 

Renault in cluster III.  

 

Cluster IV: 

This cluster contains Hyundai and Toyota, However, it isn’t very clear if 

these brands are in strong direct competition, Toyota seems to be in the 

best position among cars in terms of reliability with no major problems and 

more stylish than the others with no close rivals regarding the problems 

that can appear in the cars along with the time. Although Hyundai is 

sufficiently differentiated in the eyes of consumers in terms of style, they 

claim that the car is moderate problematic and require more maintenance. 

 

Conclusion and Recommendations: 

 

MDS requires caution in interpretation but can offer interesting 

insights into market evaluations of property attributes. Car companies 

will recognize that MDS provides an important step in identifying 

people’s first impressions of different car brands, of how they ‘feel’ 
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about particular car attributes. This evaluation of attributes is 

important where rationality may not necessarily determine choice. 

The application of cluster analysis after multidimensional scaling on 

the same data set inspire more confidence in the accuracy of the results 

and provided a range of valuable marketing implications, by showing 

how various attributes are closely linked. 

Once the preference points of the customers were identified, they 

could be easily plotted on a graph along with the different brands. 

Further investigation of the grouped preference points may lead to 

identification of some preference segments; this would be more 

interesting when compared to the clusters which the study identified. 

This type of study would provide a better basis to consider brand re-

positioning and new product introduction since brand repositioning 

strategies and new product introduction strategies can address existing 

(known) preference segments. 

More stylish and less problematic cars are perceived to be expensive 

ones. Performance and Style attributes are closely linked, it seems that 

this is how consumers view a brand in terms of its visual appeal and 

this can dictate a consumer’s opinion. 

Although the major finding in this study, based on the 

multidimensional scaling solution, comes from consumer’s 

perceptions of different car brands in two dimensions manner, it may 

be interesting and worthwhile to investigate three dimensional 

perceptual maps to gain further insights into the nature of these brands 

image. Also more in depth analysis could be done, possibly from 

grouping consumers into different socioeconomic groups to see how 
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these perceptions change depending on the cluster they are part of. It 

also could have led to some interesting multidimensional unfolding 

analysis, to identify ideal points for the different socioeconomic 

groups, this could have led to valuable marketing implications, 

suggesting that various car brands could be targeted to specific groups 

more or less, and that a specific class group could have a stronger 

predisposition towards a particular car brand and are more likely to be 

frequent shoppers than subjects from other classes. 

5.5  Future Study:   

1. We suggest using clustering metric multidimensional scaling to 

construct a better transportation network between Egypt 

governorates based on the distance points between them.  

2. We suggest using clustering nonmetric multidimensional scaling to 

establish and construct some economic developmental programs for 

each Egyptian governorate depending on its economic and social 

status.  

3. We suggest developing a new formulation that is intended for using 

multidimensional scaling in conjunction with cluster analysis in just 

one step. 
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APPENDIX A: CARS SIMILARITY DATA 

 

The following tables present the similarity matrix for each subject in the 
cars study. 

 
 

                                          Cars Similarity Matrix for Subject 1 

 1        2      3       4      5      6      7      8      9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

23
99 51
99 23 78
90 16 22
74 55 50

49
99 13

14 88 77
25 95 48
60
0

36
89

69
72

75 50 70
99 99 79
24
81

21
77

53
71

99
99
74

99
51 71

 

 
 

                                         Cars Similarity Matrix for Subject 2 

 1        2      3       4      5     6        7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

62
77 16
98 14 55
76 22 40
84 16 16

47
81 7

17 80 36
76 93 86
74
10

20
72

16
78

93 60 90
80 94 36
38
92

5
92

18
86

19
6

16
71
2 99
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                                         Cars Similarity Matrix for Subject 3  

 1       2       3       4      5     6        7     8     9      10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

85
82 15
97 28 56
51 31 36
79 27 7

43
82 7

13 84 38
82 99 73
69
15

24
80

30
78

87 76 82
68 80 40
27
90

16
72

12
66

20
28
17

80
5 95

 

 
 

                                            Cars Similarity Matrix for Subject 4  

 1       2       3       4      5      6       7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

49
96 96
97 92 94
68 12 90
77 44 88

93
90 26

97 93 94
54 76 92
47
21

48
47

92
90

25 93 49
94 20 24
94
92

35
68

18
67

93
94
87

23
55 15

 

 
 

                                     Cars Similarity Matrix for Subject 5 

 1        2       3      4      5     6       7      8     9      10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

9
90 70
87 65 6
87 77 83
33 79 25

83
89 39

86 86 99
81 30 57
74
23

20
26

94
72

22 90 40
88 69 39
78
94

5
2

81
76

97
92
81

88
20 5
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                                                Cars Similarity Matrix for Subject 6 

 1        2       3      4     5      6         7     8      9    10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

10
53 75
99 99 99
87 27 65
60 66 72

99
99 99

96 99 90
98 99 91
73
54

15
62

90
84

10 90 75
98 88 34
99
99

9
95

56
53

99
95
85

75
91 49

 

 
 

                                           Cars Similarity Matrix for Subject 7 

 1       2       3       4      5     6       7      8      9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

69
63 58
76 85 79
52 14 51
61 39 35

81
83 36

80 90 93
28 87 83
80
78

20
28

92
40

6 78 85
94 64 44
98
99

51
36

23
71

9𝑜𝑜
80
82

33
62 13

 

 
 

                                           Cars Similarity Matrix for Subject 8 

 1        2       3      4      5     6        7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

16
81 47
56 32 71
87 68 44
60 35 21

71
98 34

84 94 98
50 87 79
99
16

25
92

53
90

57 99 99
73 19 92
98
83

52
79

17
44

45
99
24

84
18 98
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                                                  Cars Similarity Matrix for Subject 9  

 1        2      3       4      5      6       7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

14
61 47
79 96 77
72 21 12
66 12 28

73
81 13

66 64 75
51 67 32
7

19
20
51

67
6

41 71 82
93 49 66
71
88

15
25

56
81

86
76
50

69
8 8

 

 
 

                                           Cars Similarity Matrix for Subject 10 

 1          2      3      4      5     6       7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11
90 69
72 26 90
93 17 69
39 34 36

24
98 80

26 82 77
80 74 75
73
24

8
62

91
90

85 53 99
99 93 87
35
76

17
85

17
64

13
99
77

91
24 65

 

 
 

                                          Cars Similarity Matrix for Subject 11 

 1        2      3       4      5      6      7      8      9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

21
97 49
99 21 76
88 14 20
72 53 48

47
97 11

12 86 75
23 93 46
58
0

34
87

67
70

73 48 68
97 97 77
22
79

19
75

51
69

97
97
72

97
49 71
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                                         Cars Similarity Matrix for Subject 12 

 1        2      3       4      5     6        7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

64
81 18
98 16 57
78 24 42
86 18 18

49
83 9

19 82 38
78 95 88
76
10

22
74

18
80

95 62 92
82 96 38
40
94

7
94

20
88

21
8

18
73
4 99

 

 
 

                                         Cars Similarity Matrix for Subject 13  

 1       2       3       4      5     6        7     8     9      10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

95
92 25
97 38 66
61 41 46
89 37 17

53
82 17

23 94 48
92 99 83
79
25

34
90

40
88

97 86 92
78 90 50
37
90

26
82

22
76

30
38
27

90
15 95

 

 
 

                                            Cars Similarity Matrix for Subject 14  

 1       2       3       4      5      6       7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

39
86 86
97 82 84
58 2 80
67 34 78

83
80 16

87 83 84
44 76 82
37
11

38
37

82
80

15 83 39
94 10 14
84
92

25
58

8
57

83
84
77

13
45 15
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                                          Cars Similarity Matrix for Subject 15 

 1        2       3      4      5     6       7      8     9      10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

10
91 71
88 66 7
88 78 84
34 80 26

84
90 40

87 87 99
82 30 58
75
24

21
27

95
73

23 91 41
89 70 40
79
95

6
23

82
77

98
93
82

89
21 6

 

 
 

                                     Cars Similarity Matrix for Subject 16 

 1        2       3      4     5      6         7     8      9    10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

9
52 74
98 98 98
86 28 64
59 67 71

98
98 98

95 98 90
97 98 90
72
53

14
61

89
83

9 89 74
98 87 33
98
98

8
94

55
52

98
94
84

74
90 48

 

 
 

                                           Cars Similarity Matrix for Subject 17 

 1       2       3       4      5     6       7      8      9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

61
62 58
77 85 80
53 14 52
62 39 36

81
83 37

81 90 94
29 87 84
81
79

20
28

93
41

6 79 85
94 65 44
98
99

52
37

23
71

91
81
83

33
62 14
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                                               Cars Similarity Matrix for Subject 18 

 1        2       3      4      5     6        7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

15
80 47
55 32 70
86 68 43
59 35 20

71
98 33

83 94 97
49 87 78
98
15

25
92

52
89

57 98 99
73 18 92
98
83

51
78

17
44

44
98
23

84
18 97

 

 
 

                                         Cars Similarity Matrix for Subject 19  

 1        2      3       4      5      6       7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

24
81 47
89 96 87
82 21 22
76 12 38

73
81 23

76 64 85
61 67 42
17
29

20
51

77
16

41 81 82
93 59 66
71
88

25
35

56
81

96
86
60

69
8 18

 

 
                                         Cars Similarity Matrix for Subject 20 

 1          2      3      4      5     6       7      8     9     10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1
80 69
62 26 80
83 17 59
29 34 26

24
98 70

16 82 67
70 74 65
63
14

8
62

81
80

85 43 99
99 83 87
35
76

7
75

17
64

3
89
67

91
24 55
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 الملخص العربي

 

والتحليل التجميعي من التقنيات الرقمية التي تساعد الباحث  بعادالتحليل المتعدد الأكلا من  يعتبر

يستطيع بعاد التحليل المتعدد الأباستخدام في التحقق من بنية البيانات في مختلف المجالات. 

وباستخدام التحليل  ختلاف الي رسم هندسي.الأالباحث تحويل كمية كبيرة من بيانات التشابه و 

المتشابهة معا في نفس المجموعة.ر م تجميع العناصتالتجميعي ي  

بعاد حيث انيفضل استخدام التحليل التجميعي مع التحليل المتعدد الأ  

لك غير ذا كان ذأوضح للتشابه بين  للبنات أيعمل التحليل التجميعي علي تقديم صورة  -1

 بعاد.واضح بالرسم الهندسي للتحليل المتعدد الأ

ون ليس لدينا بيانات رقميةعن المتغيرات  في العديد من مشاكل التحليل التجميعي يك -2

ختلاف بين المتغيرات. وبينات التشابه ويكون فقط لدينا بنات عن  التشابه والأ

و غير رقميه . ولتحويل البيانات الغير رقمية الي بيانات أن تكون رقمية أختلاف اما والأ

 بعاد.  ستخدام  التحليل  المتعدد الأأرقمية فيتم 

لهذه   ختياربعاد والتحليل التجميعي و يعتمد الأساليب التحليل المتعدد الأأالعديد من  يتوافر للباحث

ساسية علي نوع البيانات تحت الدراسة.أساليب بصفة الأ  

بعاد والتحليل ساليب التحليل المتعدد الأأختلفة لكلا من نواع المتم تقديم الأفي هذه الرسالة 

.رياضية محلولة للتوضيحمقرنة كلا منها بأمثلة التجميعي   

حيث أنه يعتمد كلا من التحليل التجميعي و التحليل المتعدد الأبعاد بصففففففسة اعففففففاعففففففية  لي   لي 
بينات التشففففابه و الأ تلاد ققد ادمنا الأنوام الم تلسة لمقايت التشففففابه والأ تلاد مقرنة كلا منها 

 بأمثلة رياضية محلولة للتوضيح.
 

يق علي التحليل التجميعي و التحليل المتعدد الأبعاد علي بيانات فعلية في هذا البحث تم تقديم تطب

وكان  تم تجميعها عن طريق أستمارة أستبيان التي وزعت علي معارض السيارات بمدينة بنها.

أحتوت أستمارة الأستبيان علي كل أسماء  الأزواج الممكنة لعشرة  شخص. 20حجم العينة 

تم الطلب من هذه الاشخاص بأعطاء رقم للتشابه والاختلاف لكل زوج سيارات من  سيارات.  

من هذه الأزاواج. ترواح هذا الرقم بين صفر ومائه. فأذا رأي الشخص أن زوج السيارات 

مختلفين الي أعلي درجة أعطي الرقم صفر. و أذا رأي الشخص أن زوج السيارات متشابه الي 

ه.أعلي درجة أعطي الرقم مائ  



 

 

 

 الملخـــص العـــربــي 

iii 

لتطبيق التحليل المتعدد الأبعاد لتحويل بيانات التشابه لسوق  (SPSS) تم استخدام برنامج

لتطبيق التحليل التجميعي اتكوين  (SPSS) السيارات ال رسم هندسي. ثم تم استخدام برنامج

  لأنواع السيارات المختلفة محل الدراسة.  وبعد الحصول علي النتائج موعات متشابه فيما بينهاجم

تم تفسير النتائج وأوصينا شركات السيارات تحت الدراسة بأستخدام هذه النتائج للتعرف علي 

 .أنواع  السيارات الأكثر تشابه لها أي الأكثر منافسة لها

 

 ولتحقيق غرض الدراسة تم تقسيمها على النحو التالى:
 

 :قى هذا السصل تم  رض اهمية الدراعة و الدراعات العابقة التى تناولت  الفصل الاول
 الموضوم محل الدراعة.

  :ها تلاد وانوا تم  رض مسهوم مقايت التشابه والا قي هذا السصل الفصل الثاني
  .الم تلسة مع امثله رياضية محلولة لتوضيح كل منها

 
  :د السصل تم  رض مسهوم التحليل المتعدقي هذا الفصل الثالث التحليل المتعدد الابعاد

  .الابعاد وانوا ه مع وجود امثلة رياضية محلولة لتوضيح كل منها
 

  : قي هذا السصل تم  رض مسهوم التحليل التجميعي و طراه الم تلسة مع الفصل الرابع
 وجود امثله رياضية محلولة لتوضيح كل منها.

 لتحليل المتعدد الابعاد والتحليل : قي هذا السصل تم  رض تطبيق االفصل الخامس
التجميعي  لي بيانات قعلية تم تجميعها باعتمارة اعتبيان تم توزيعها  لي محلات بيع 

ش ص وتم ا ذ المتوعط  20وتاجير العيارات لا طائها للمعتهلك وكان حجم العينة 
د الها ش ص( وا  20الحعابي لهذه البيانات )بيانات التشابه والا تلاد المجمعة من ال

 (وتم الحصول  لي النتائج كما هو موضح بالسصل ال امت.SPSالي برنامح ال)
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